

TECHNICAL AND LEGAL REQUIREMENTS

D1.3: Technical and legal requirements for USER-CHI solutions

Date: **31/01/2021** Author(s): **José Mercado, Anne Freiberger, Felix Nowack, Julia Schmidt, Hermann Blümel** Co-author(s): **María del Carmén Tomas, Antonio Martín**

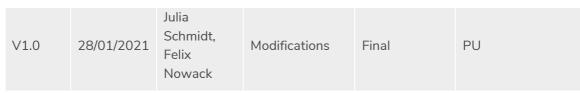
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [875187]

Deliverable details

Title	WP	Version
D1.3 Technical and Legal requirements for USER-Chi solutions	1	V1.0

Contractual delivery date	Actual delivery date	Delivery type*
31.01.2021	31.01.2021	R

*Delivery type: **R**: Document, report; **DEM**: Demonstrator, pilot, prototype; **DEC**: Websites, patent fillings, videos, etc; **OTHER**; **ETHICS**: Ethics requirement; **ORDP**: Open Research Data Pilot.


Author(s)	Organisation
José Mercado	IKEM
Anne Freiberger	IKEM
Felix Nowack	IKEM
Julia Schmidt	IKEM
Hermann Blümel	IKEM
María del Carmen Tomás	ETRA
Antonio Martín	ETRA

Document history

Version	Date	Person	Action	Status*	Dissemination level**
V0.1	22/09/2020	Anne Freiberger, José Mercado	Table of contents - first draft	Draft	PU
V0.2	17/11/2020	Anne Freiberger, José Mercado	Description: Methodology	Draft	PU
V0.3	18/11/2020	José Mercado	USER-CHI products' description	Draft	PU
V0.4	07/12/2020	Julia Schmidt	Chapter 2 – First Draft	Draft	PU
V0.5	18/12/2020	Felix Nowack	Chapter 3, Chapter 4	Draft	PU
V0.6	07/01/2020	María Tomás	Volere tool and results	Draft	PU
∨0.7	08/01/2021	Julia Schmidt	Modifications Description: Methodology	Draft	PU
V0.8	13/01/2021	Hermann Blümel	Revision chapter 4	Draft	PU
∨0.9	20/01/2021	María Tomás	Integration full chapter 5	Draft	PU
V0.10	21/01/2021	María Tomás	Integration subsections chapter 3	Draft	PU
V0.11	22/01/2021	Julia Schmidt, Felix Nowack	Revision full document, formatting	Draft	PU
V0.12	27/01/2021	Juan F. Giménez	Peer review	Draft	PU

*Status: Draft, Final, Approved, Submitted (to European Commission).

Dissemination Level: **PU: Public; **CO**: Confidential, only for members of the consortium (including the Commission Services); **EU-RES** Classified Information - restraint UE; **EU-CON**: Classified Information - confidential UE; **EU-SEC**: Classified Information - secret UE

Abstract

This report presents the technical and legal requirements, which need to be considered for the development and integration of 8 USER-CHI products in up to 7 European cities. Regarding the technical requirements, the international, European, and national approaches to standardisation of electromobility are described as well as the legal requirements that derive from both the European as well as the national or regional legal framework. By this the similarities and differences with which the developers, installers and users of charging infrastructure are confronted become recognizable.

Keywords

Technical requirements, legal requirements, technical products, Volere, demo sites, CLICK, SMAC, INDUCAR, INSOC, INCAR, eMoBest, INFRA, standards, proprietary, interoperability, legal framework, law, EV, charging, infrastructure.

Copyright statement

The work described in this document has been conducted within the USER-CHI project. This document reflects only the USER-CHI Consortium view and the European Union is not responsible for any use that may be made of the information it contains.

This document and its content are the property of the USER-CHI Consortium. All rights relevant to this document are determined by the applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are not to be used or treated in any manner inconsistent with the rights or interests of the USER-CHI Consortium or the Partners detriment and are not to be disclosed externally without prior written consent from the USER-CHI Partners.

Each USER-CHI Partner may use this document in conformity with the USER-CHI Consortium Grant Agreement provisions.

Executive summary

This report has the function of a reference book for the USER-CHI consortium on matters regarding technical and legal issues, which should be considered for the development and integration of the 8 technical and non-technical USER-CHI products.

Regarding the technical requirements, the international, European, and national approaches to standardisation of electromobility are presented. On the other hand, the legal requirements for the technical and non-technical products are based on the European legal framework and its national implementation laws, as well as additional national and regional laws.

The methodology is characterised by an integrated approach: general standards and requirements obtained from a literature review and the responses of experts collected with questionnaires are analysed and summarized. Together they form a framework within which the specific requirements that USER-CHI products must accomplish are based. They have been obtained from the product leaders, technical experts, and pilot sites of the consortium using the Volere tool. This combined approach reflects the manifold "ecosystem" of different sectors, disciplines, stakeholders, and technologies that are involved in developing and implementing innovative and user-friendly solutions for EV charging.

Table of contents

1.	Introduction	.16
1.1	Purpose of the document	.16
1.2	Scope of the document	.17
1.3	Structure of the document	.17
1.4	Connection to other tasks	.18
2.	USER-CHI products	.19
2.1	CLICK - Charging Infrastructure location and holistic planning kit	.19
2.2	Station of the Future' Handbook	.19
2.3	eMoBest –e-Mobility Replication and Best Practices Cluster	.20
2.4	INFRA – Interoperability Framework	.20
2.5	INCAR – Interoperability, Charging and Parking Platform	.20
2.6	SMAC - Smart charging tool	.20
2.7	INSOC - Integrated Solar-DC charging for LEVs	.21
2.8	INDUCAR - Inductive charging for e-cars	.21
3.	Methodology	.22
3.1	Approach	.22
3.2	The Identification and Definition of General Technical and Legal Requirements	
3.2.1	Literature Review of Technical Requirements	
3.2.2	Literature Review on Legislation and Regulation	
3.2.3	Drafting technical and legal questionnaires	
3.2.4	Distribution of the technical and legal expert questionnaires	
3.2.5	Analysis and summary of the general requirements (technical and legal requiremer 38	
3.3	The Identification and Definition of Specific Requirements	.39
3.3.1	Requirement prioritisation	.40
3.3.2	Volere tool	.40
3.3.3	Requirement definition	.41
3.3.4	Requirement Validation	
3.3.5	Requirement Revision	
3.3.6	Iterations and final results	
4.	General Technical and Legal Requirements	.53
4.1	Cross-cutting technical and legal requirements for the technical USER-CHI products	53

4.1.1 4.1.2	Cross-cutting technical requirements for CLICK, INCAR, SMAC, INDUCAR	
4.2 Plann 4.2.1 4.2.2	USER-CHI product specific general requirements: CLICK - Charging Location and H ing Kit Technical Requirements for CLICK Legal Requirements for CLICK	116 116
4.3 Parkir 4.3.1 4.3.2	USER-CHI product specific general requirements: INCAR - Interoperability, Charging Platform Technical Requirements for INCAR Legal Requirements for INCAR	122 122
4.4 4.4.1 4.4.2	USER-CHI product specific general requirements: SMAC - Smart Charging Tool Technical Requirements for SMAC Legal Requirements for SMAC	131
4.5 Cars 4.5.1	USER-CHI product specific general requirements: INDUCAR - Inductive charging 135 Technical Requirements for INDUCAR	
4.5.2	Legal Requirements for INDUCAR	137
4.6 for LE 4.6.1 4.6.2	USER-CHI product specific general requirements: INSOC - Integrated Solar DC-Ch Vs Technical Requirements for INSOC Legal Requirements for INSOC	138 138
5.	Specific Requirements for USER-CHI solutions	148
5.1 5.1.1 5.1.2 5.1.1	CLICK product Overview Figures of the Validation and Revision process Final list of requirements	148 150
5.2 5.2.1 5.2.2 5.2.3	INCAR product Overview Figures of the Validation and Revision process Final list of requirements	157 159
5.3 5.3.1 5.3.2 5.3.3	SMAC product Overview Figures of the Validation and Revision process Final list of requirements	168 169
5.4 5.4.1 5.4.2	INSOC product Overview Figures of the Validation and Revision process	174 175
5.4.3 5.5	Final list of requirements	

Overview	
Figures of the Validation and Revision process	
Final list of requirements	
INFRA product	
Overview	
Figures of the Validation and Revision process	
Final list of requirements	
EMOBEST product	
Overview	
Figures of the Validation and Revision process	
Final list of requirements	
Conclusions	
Technical Requirements	
Technical Requirements	
Legal Requirements	
Legal Requirements	
Legal Requirements	
	Final list of requirements INFRA product Overview Figures of the Validation and Revision process Final list of requirements EMOBEST product Overview Figures of the Validation and Revision process Final list of requirements

÷ .

List of figures

Figure 1. Methodological approach	22
Figure 2: Overview - Legal Framework	25
Figure 3: Groups of requirements defined for the USER-CHI products	41
Figure 4: Requirement specification process diagram	41
Figure 5: Volere main page	42
Figure 6: Window to insert a new requirement in Volere tool	43
Figure 7: USER-CHI project requirement details	44
Figure 8: Dependencies, conflicts and objections section	48
Figure 9: Example of a comment of a project requirement objection (1)	49
Figure 10: Example of a comment of a project requirement objection (2)	50
Figure 11: Editing a requirement during the revision phase (1)	50
Figure 12: Editing a requirement during the revision phase (2)	50
Figure 13: Mark the requirement objection as revised	51
Figure 14: Mark the requirement objection as validated	51
Figure 15: Volere iterative process	52
Figure 16 Cross-cutting technical requirements for USER-CHI technical products.	54
Figure 17: Conductive charging of EVs	59
Figure 18: Conductive charging with higher charging capacity	60
Figure 19 INCAR Platform. Source: Martin et al. 2020	124
Figure 20 Wireless charging of EVs. Source: NPE 2017: 32	135
Figure 21: CLICK product icon	149
Figure 22: CLICK Product. Dependencies identified during the requirement definition proc	

Figure 23: CLICK Product. Conflict identified during the requirement definition process 152
Figure 24 CLICK Product. Objections identified during the requirement definition process 152
Figure 25 INCAR product icon
Figure 26: INCAR Product. Dependencies identified during the requirements definition process
Figure 27: INCAR Product. Conflict identified during the requirements definition process 161
Figure 28: INCAR Product. Objections identified during the requirements definition process 161
Figure 29: SMAC product icon
Figure 30: SMAC product. Dependencies identified during the requirements definition process
Figure 31: MEB task. Dependencies identified during the requirements definition process 171
Figure 32: INSOC product icon
Figure 33: INDUCAR product icon 177
Figure 34: INDUCAR Product. Objections identified during the requirements definition process
Figure 35: INFRA product icon
Figure 36: INFRA Product. Dependencies identified during the requirements definition process
Figure 37: EMOBEST product icon
Figure 38: EMOBEST Product. Dependencies identified during the requirements definition process
Figure 39: EMOBEST Product. Conflict identified during the requirements definition process 185

List of tables

Table 1: USER-CHI Environment	16
Table 2: Technical requirements literature review - relevant documents considered	23
Table 3 European Legislation and Regulation relevant for USER-CHI products	26
Table 4: National implementation of the AFID in Germany	
Table 5: Building and construction law in Germany	
Table 6: Energy law in Germany	31
Table 7: Measuring and calibration law in Germany	31
Table 8: Procurement law, concession law and subsidies in Germany	32
Table 9: Public, civil, or stakeholder participation in Germany	32
Table 10: Road traffic law in Germany	32
Table 11: Parking management in Germany	
Table 12: Data access and sharing law in Germany	
Table 13: Data protection law in Germany	
Table 14 Legal requirements literature review - relevant documents reviewed	
Table 15: Technical questionnaires - main topics covered	36
Table 16: Legal questionnaire - main topics covered	37
Table 17: Distribution of technical questionnaires to USER-CHI partners – overview	
Table 18: Distribution of legal questionnaires to USER-CHI partners – overview	37
Table 19: Distribution of legal and technical questionnaires to external partners – over	
Table 20: Distribution of legal and technical questionnaires to external partners - overv	

Table 21 Technical requirements – feedback results from USER-CHI and external partners 53

Table: 22 General technical requirements for electromobility.	54
Table 23: Structure of the standardisation landscape	55
Table 24: EV charging - AC and DC current values for BEVs and PHEVs	58
Table 25 Wired charging with higher charging capacity	60
Table 26 Plug and socket configurations for AC and DC charging. Source: Wagner 2020	65
Table 27: Standards for testing the influences of the environment. Source: Varro 2013 and US CHI German partners	
Table 28: Standards for technical records and documentation	71
Table 29: Legal requirements – feedback results from USER-CHI and external partners	72
Table 30 Overview of national measures implementing the AFID (2014/94/EU)	74
Table 31: National implementation of the goal of non-discriminatory access to public char infrastructure (Art. 2 No. 7, Art. 4 No. 8-11 AFID)	
Table 32: Rules implemented to guarantee "ad-hoc charging" (Art. 4 No. 9 AFID)	78
Table 33: National laws to ensure interoperability of charging infrastructure run by different C	
Table 34: National laws implementing Art. 8 (2) of the EPBD (2018/844/EU)	80
Table 35: National laws implementing Art. 8 (3) of the EPBD (2018/844/EU)	81
Table 36: National laws implementing Art. 8 (5) of the EPBD (2018/844/EU)	82
Table 37: Building permits needed for the installation of charging points in public space	83
Table 38: Involvement of public authorities and public bodies	84
Table 39: Different steps of administrative approval	85
Table 40: National regulations for the installation and operation of charging infrastructure	86
Table 41: Fire protection provisions for charging points	87
Table 42: Local provisions for the preservation of historical monuments affecting the construct of charging points	
Table 43: National laws implementing Directive 2014/23/EU	89

Table 44: National laws implementing Directive 2014/24/EU	90
Table 45: National laws implementing Directive 2014/25/EU	92
Table 46: Public subsidy directives to promote charging infrastructure (e.g., by na authorities)	
Table 47: National public procurement laws regulating the deployment of charging	
Table 48: Local tender specifications for charging infrastructure demand standards/requirements (e.g., for interoperability)	-
Table 49: Safety regulations for the operation of charging infrastructure for EVs	96
Table 50: National implementation of EU legislation on the integration of EVs and F Grid Services (Directive 2019/944/EU)	
Table 51: National implementation laws to facilitate the connection of charging distribution network (Directive 2019/944/EU)	-
Table 52: DSOs right to adjust consumer's demand from controllable loads	
Table 53: National laws regulating the physical electricity grid regarding operation interaction with stakeholders	
Table 54: Definition of charging points for EVs as final costumers/users or supplied under the applicable national regulation	
Table 55: National energy law regulations concerning reporting obligations observed by CPOs	
Table 56: Permissions needed to set up charging infrastructure in public spaces bas road use regulation	
Table 57: Transposition laws of the Measuring Instruments Directive (2014/32/EU	I) 107
Table 58: National rules on the regulation of the calibration of measuring device infrastructure	
Table 59: Legal duty to save data of measured values of energy within the electrici charging point	
Table 60: Legal duties to comply with legal metrology for users of measured values	

Table 61: Applicability for obligations arising out of legal metrology requirements for backend systems
Table 62: National rules regulating tariff models regarding the payment for the use of public charging infrastructure 112
Table 63: National regulations on the management of data models for smart metering systems already implemented regarding cybersecurity and data protection of smart metering systems
Table 64 Public participation during the planning procedure118
Table 65 Requirement of CPOs to provide real-time availability data of their charging points to other stakeholders 119
Table 66 Legal requirement of CPOs to provide historic consumption data of their charging points to local authorities
Table 67 Provisions for data sharing processes among CPOs regarding minimum standards and interoperability 121
Table 68 Booking of parking spots on public roads for EVs for the purpose of charging 127
Table 69 Exemptions from or reductions of parking fees for EVs
Table 70 Privileges of EVs which are part of a carsharing fleet
Table 71 Rules on enforcement of administrative offences for parking after charging process is finished
Table 72 National laws on the topic of V2G and status of its practical implementation
Table 73 Separation within the national scheme of electricity fed into the grid and electricity consumed from the grid 134
Table 74 EMC requirements. Source: NPE 2017: 16137
Table 75 Permissions required for the installation of a PV system by national building and construction law regarding specific sizes of constructions
Table 76 Installation of PV systems for LEV charging stations in urban and rural areas
Table 77 Requirements for PV systems regarding fire protection provisions 143
Table 78 Rights and duties for electricity generators and suppliers under national energy law

Table 79 Permissions which are required by national road use law in order to set up a LEV boxon public ground145
Table 80 Preservation of historical monuments in force opposing the construction of a "LEV box" and a photovoltaic system for LEV charging stations
Table 81: Summary of CLICK specific requirements
Table 82: Summary of INCAR specific requirements 162
Table 83: Summary of SMAC specific requirements
Table 84: Summary of the specific requirements for the EV batteries and charging solutions models 173
Table 85: Summary of the specific requirements of INSOC product
Table 86: Summary of the specific requirements of INDUCAR product
Table 87: Summary of the specific requirements of INFRA product
Table 88: Summary of the specific requirements of EMOBEST product

1.Introduction

1.1 Purpose of the document

The aim of USER-CHI is to unlock the potential of transnational and inter-regional electromobility in Europe. Therefore, different charging technologies and the processes to use them will be integrated to achieve interoperability for users. This process includes the development and integration of various innovative solutions, for example, charging technologies, e-roaming, billing, authentication, and reservations of parking slots in front of charging infrastructure.

Moreover, the synergies between electromobility and smart grids will be fostered. The developed technological tools, processes to use them, and business models will be put into practice and demonstrated in five areas: Barcelona metropolitan area (Spain), Rome (Italy), Berlin (Germany), Budapest (Hungary), and Turku (Finland). Besides, replication cities have been included: Murcia (Spain) and Florence (Italy).

This document – Deliverable 1.3 – provides an overview of existing standards/requirements and normative restrictions collected that USER-CHI solutions must accomplish at all five partner countries and a set of at least five other relevant EU countries.¹ Therefore, both technical and legal standards/requirements have been collected, respectively.

Each of the mentioned demo sites will focus on the implementation of a different set of technical products. At this stage of the project (M12), the demo sites plan to implement/demonstrate the following technical USER-CHI products:

Country	Demo Sites	CLICK	SMAC	INSOC	INDUCA R	INCAR
Spain	Barcelona	Х	Х	Х	Х	Х
Germany	Berlin	Х	Х			Х
Hungary	Budapest	Х	Х	Х		Х
Italy	Rom	Х	Х	Х		Х
Finland	Turku	Х	Х	Х		Х

Table 1: USER-CHI Environment

Accordingly, the development of the technical USER-CHI products is a key element of the project. This document will assist the USER-CHI consortium during the development process of and

¹ see USER-CHI Grant Agreement, Annex 1, Part A, pp.11.

during the implementation phase by providing an overview of the technical and legal requirements for the five technical USER-CHI products, which need to be considered. The analysis includes legal and technical requirements for the five demo sites, as well as five additional countries.

1.2 Scope of the document

This document will provide an overview of the technical and legal requirements, which could influence the development process of the five technical USER-CHI products, namely CLICK (Charging Location and Holistic Planning Kit), INCAR (Interoperability, Charging and Parking Platform), SMAC (Smart Charging Tool), INDUCAR (Inductive Charging for e-Cars), and INSOC (Integrated Solar-DC charging for LEVs).

There is a focus on the technical products in this report, because for the USER-CHI non-technical products, such as e-Mobility Replication and Best Practices Cluster (eMoBest) and "Station of the Future" Handbook, technical and legal requirements as such do not fall into the scope of the products.

The USER-CHI product eMoBest focuses on the transferability potential, as well as the social, economic, and environmental impact of the tested models. Moreover, the "Station of the Future" Handbook is the outcome of WP1, which focuses on the users' needs and desires in regard of EVSE (electric vehicle supply equipment). Therefore, the handbook will provide guidelines for the design and development of EVSE and charging solutions, which take the users' needs sufficiently into account.

Regarding the technical requirements this includes standards on the topics of energy supply for EVs charging infrastructure, parking, and charging, communication, booking and billing, and planning.

Moreover, the legal requirements, which influence the expansion of charging infrastructure for EVs derive from European, national, and regional law. The areas of law include planning and construction law, road traffic law (reservation of parking spots in public spaces), energy law (energy supply to charging point, grid connection, requirements for network operator about network stability), calibration law (billing models, roaming platforms) as well as data protection law (authentication processes / handling of personal data).

1.3 Structure of the document

The document compromises 6 chapters and annexes. Following the introduction, the second chapter gives a short overview of the 8 USER-CHI products, 6 are technical ones, 2 are non-technical. The following third chapter describes the integrated methodological approach how the general technical and legal framework was collected, analysed, and summarized, divided into the identification and definition of general technical and legal requirements and the identification and definition of specific requirements with the use of the VOLERE tool, describing the specific requirements that USER-CHI products must accomplish. Furthermore, the fourth chapter summarizes in a first step the cross-cutting technical and legal requirements for the technical

USER-CHI products and within the following step USER-CHI product specific general requirements. In addition, the fifth chapter provides specific requirements for two USER-CHI products. The final chapter 6 summarizes the technical and legal requirements.

1.4 Connection to other tasks

There are several tasks and products of other work packages – such as WP2, WP3, WP4 and WP5 – that are directly or indirectly related to T1.3. The inventory of technical and legal requirements contributes to all 8 technical and non-technical USER-CHI products. In addition, T1.3 incorporates results from the requirements management tool Volere used by the project consortium for all products (technical and non-technical).

2.USER-CHI products

USER-CHI combines technical, regulatory, and business elements, under a user-centric and smart city perspective, to produce a set of solutions that cover all aspects of a massive deployment of electric vehicles. These user-centric solutions are packaged in the form of 8 products (P) to guarantee the technical performance within the project, and the sustainability and market transferability after the project completion.

2.1 CLICK - Charging Infrastructure location and holistic planning kit

CLICK focuses on the design and test of an easy-to-use question-and-answer online tool. This tool supports location planning for charging infrastructure in cities and is based on a step-by-step top-down process. Its purpose is to optimize the location and planning of new charging infrastructure in cities. The process matches users' needs, preferences and habits, the existing charging technologies, and typologies available in the market, the location, the course and the capacity of the electric grid, parking regulation and other aspects.

The results generated by CLICK addresses proposed locations, preferred technologies as well as the number of charging points needed, amongst other factors. Moreover, CLICK enables a postplanning monitoring process by offering interfaces to be fed with actual utilization of data of electric vehicle supply equipment (EVSE). This triggers the demand-oriented expansion of the charging infrastructure network.

2.2 Station of the Future' Handbook

This handbook embodies the key results of the users' analysis conducted in USER-CHI in the form of short-and mid-term recommendations addressed to CPOs, EMSPs and other private stakeholders of the electromobility field. The Handbook redefines how charging stations are understood, developing the concept of 'Station of the Future', and providing guidelines and added-value insights for the design strategies of user centric EVSEs and charging solutions. It defines the characteristics of the 'perfect' charging station: typology of the charging points, power, connectors, and cables (if any), access and authentication methods, payment and billing features, electricity origin, associated services offered in the stations, etc.

The Handbook also includes the analysis of innovative business models that can overcome legal barriers and that can offer positive returns of investment.

2.3 eMoBest –e-Mobility Replication and Best Practices Cluster

The eMoBest cluster is a collaboration platform that facilitates the transferability of best practices among the 5 demonstration cities, the 2 replication cities and the 5 interested cities in USER-CHI. It makes use of the experience gained through all USER-CHI actions and demonstration activities, and provides technical, legal, and economic feasibility analysis of USER-CHI business models. Thus, eMoBest is enhancing results' replication after the project completion. It helps stakeholders like local governments, urban planners, mobility departments and transport authorities to replicate solutions and learn from the experience of other cities.

And more: eMoBest cluster includes policy recommendations for action on European and national levels for a more harmonized take-up on the internal European market, standardization recommendations, transferability assessment (intra-city, inter-city), analysis of the EU regulatory and standard framework.

2.4 INFRA – Interoperability Framework

INFRA focuses on the design and the specification of interoperability and roaming services and contains the definitions of both INFRA and INCAR. Thus, INFRA elaborates a set of rules, guidelines, and recommendations to support highly interoperable processes among the electromobility stakeholders along the two TEN-T corridors, addressing the organisational, legal, technical, and semantic dimension.

2.5 INCAR – Interoperability, Charging and Parking Platform

The INCAR Platform offers innovative integrated EV-related services such as (i) interoperability and roaming, (ii) park & charge booking features, avoiding waiting times and increasing EVSE usage, (iii) real-time information about publicly accessible EVSEs, (iv) searching and routing to EVSEs, and (v) integration with route planning of e-fleets. These services are customised to different end users' profiles and market segments to enrich the customer proposition. Regarding interoperability, the platform gives technical support to the INFRA –Interoperability Framework. It provides an operator and service provider independent platform to enable an easy, non-discriminatory, convenient, and barrier-free access to EVSE by end users.

2.6 SMAC - Smart charging tool

SMAC provides smart grid integration services for slow, medium, fast, and ultrafast charging, with the objective of minimising the grid impact associated to the implementation of charging infrastructure. SMAC provides high-value services to EV drivers, such as minimum charging

prices and maximum RES electricity supply. EV users' preferences and requirements are considered for the definition and customisation of the services. In addition, SMAC offers flexibility and stabilisation benefits to the DSOs: reduction of the grid impact of new charging infrastructure through demand management, possibility to use EVs as dynamic distributed storage devices, feeding electricity stored in their batteries back into the local electric grid when needed (V2G supply) and flexibility services to the requests of the grid.

2.7 INSOC - Integrated Solar-DC charging for LEVs

The INSOC system addresses charging needs of LEVs in urban areas. INSOC consists of a standardized and replicable low-power DC-charging solution with on-site produced renewable energy and the antitheft-proof parking. It also integrates payment and billing services, making it especially convenient for new urban mobility modes, such as e-bike and e-scooter sharing services. The standardised solution allows a reduction of the price for final users and facilitates market acceptance due to the integration of all services: vehicle sharing, charging, parking, paying and clean energy usage.

2.8 INDUCAR - Inductive charging for e-cars

INDUCAR provides sets of vehicle-side components for 3 kW and 20 kW wireless automated power transfer, and corresponding charging stations. The hardware components are supplemented by software for the wireless charging systems and the adaptation of the different vehicle types selected. The targeted vehicles are retrofitted and apply reasonable standards.


INDUCAR applies to latest state of knowledge and attempt to reflect applicable states of ongoing discussion on standardisation. The design reflects the character of the project and its frame conditions. Wireless charging is implemented together with M2M communication technologies, providing automated and transparent identification, payment and charging features.

3. Methodology

3.1 Approach

The methodology is characterised by an integrated approach (Figure 1): general standards and requirements obtained from a literature review and the responses of experts collected with a questionnaire are analysed and summarised. Both general standards and requirements "form a cloak" under which the specific requirements obtained from the product leaders, technical experts, and pilot sites of the consortium through the Volere tool may be implemented.

Figure 1. Methodological approach

The identification of **general requirements** comprises of identifying general technical and legal requirements effective at the European, national, regional, and local level. General technical requirements for hardware components for charging infrastructure (e.g., charging stations, charging plugs) and communication platforms have been reviewed at the European and national level, only. Relevant effective legislation for EVSE has been reviewed at the European, national, regional, and local level. These requirements serve as the general framework determining the overall system boundaries of the specific requirements.

The identification of the **specific requirements** comprises of a broader set of requirements to be considered within the development process of the USER-CHI products. For coordinating the definition of requirements by the partners from the USER-CHI consortium, the Volere

· · ·

methodology has been used². Volere provides a conceptual framework for organising and structuring the definition of requirements, as well as some templates for their formalisation and some procedural rules and pattern for the work.

Applying this approach allowed for the collection of relevant information in a horizontal and vertical manner. The following subsections provide a detailed overview of the applied approach.

3.2 The Identification and Definition of General Technical and Legal Requirements

This section describes the steps carried out to identify effective general technical and legal requirements that need to be considered for the development and implementation of USER-CHI products. After analysing the USER-CHI products, the main steps that have been carried out comprised of a literature review, developing a draft for a technical and legal expert questionnaire, its distribution and analysis (Figure 1).

3.2.1 Literature Review of Technical Requirements

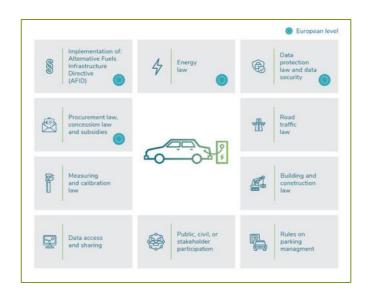
In a first step, a literature review has been carried out. The aim of the literature review was to identify and cluster relevant technical standards for hardware components, communication technologies/interfaces, services, and grid connection for EVSE as well as charging technologies for EVs (e.g., AC, DC conductive; inductive charging; connection methods; charging plug components).

The starting point for identifying national technical standards and requirements for hardware components, communication technologies/interfaces and grid connection for EVSE was the review of available literature in the German context, such as technical norms, guidelines, and standards (such as ISO and DIN standards). Accordingly, analysing the state of the art in the German literature during the past 10 years was the starting point from where the research regarding the technical standard for USER-CHI technical products started. Table 2 provides an overview of the main literature reviewed.

Year	Author(s)	Title
2020	Has2be GmbH	Value chain in charging infrastructure operation with has.to.be. in the context of efficient design of complex roaming relationships
2020	Wagner, L.	The technical guide to the charging infrastructure for electric mobility - Version 3

Table 2: Technical requirements literature review - relevant documents considered

² Volere methodology, n.d.


2018	Ferwerda et al.	Advancing E-Roaming in Europe: Towards a Single "Language" for the European Charging Infrastructure
2017	Hall & Lutsey	Emerging best practices for electric vehicle charging infrastructure
2017	Nationale Plattform Elektromobilität (NPE)	The German Standardization Roadmap Electromobility 2020
2014	NPE	The German Standardization Roadmap for Electromobility - Version 3.0. AG 4 - Standardization and Certification
2013	Varro, W.	Technical specifications as annex to the invitation to tender for the construction of charging infrastructure for EVs in the city of Berlin
2012	NPE	The German Electromobility Standardization Roadmap - Version 2
2012	Teichmann et al.	Electric mobility - standards get the future moving

3.2.2 Literature Review on Legislation and Regulation

The aim of the literature review on legislation and regulation was to gain an overview of the European and German legal framework to identify relevant fields of law that must be considered during the development and for the implementation of the five technical and three non-technical USER-CHI products in the demonstration sites (see Figure 2).

Figure 2: Overview - Legal Framework

3.2.2.1 European Legislation and Regulation

In Table 3 an overview of the relevant EU legislation and regulation that is being implemented through national laws is presented.

Table 3 European Legislation and Regulation relevant for USER-CHI products

No	Regulation	Fokus	Relevance for USER- CHI products
1	Directive 2014/94/EU - Deployment of Alternative Fuels Infrastructure (AFID)	The AFID creates a uniform European framework for the deployment of infrastructure for alternative fuels. This includes the charging point infrastructure for EVs (Art. 1 AFID). Its goal is to implement a strategic and European-wide infrastructure for alternative fuels. According to the AFID, alternative fuels are electricity, hydrogen, liquid gas (LPG) and others.	INSOC, INDUCAR, SMAC
		Core regulations include the installation of an appropriate number of public charging points until 31 of December 2020, mandatory technical interoperability standards for charging plugs, as well as the description of roles and duties for charge point operators (CPOs), electromobility service providers (EMSPs), and distribution system operators (DSOs). Non-discriminatory access for users to different types of charging points is mandatory, as well as for the relation between service and electricity providers. Therefore, the implementation laws on the AFID are essential for national legal requirements on the charging infrastructure, which will be developed and implemented in USER-CHI in INSOC, INDUCAR, SMAC.	
2	Directive 2014/23/EU - Awarding of Concessions Contracts	The regulation addresses the European framework for the awarding of concession contracts to ensure, fair and non-discriminatory market access and to enable EU-wide competition; thus, promoting public investment in infrastructure and strategic services for citizens.	CLICK, INSOC, INDUCAR, SMAC
		The topic of concession law is relevant for the USER-CHI products CLICK, INSOC, INDUCAR, SMAC as the deployment of charging infrastructure by companies could include concession processes. Regarding these processes the implementation laws of the European Directive on the awarding of concession contracts needs to be considered.	
3	Directive 2014/24/EU - Public Procurements and Concessions	The directive 2014/24/EU regulates the public procurement and concessions. The aim of this directive is to provide a simplified and more flexible procurement procedure to ensure benefits for both businesses and	CLICK, INSOC, INDUCAR, SMAC

		public purchasers. Additionally, this directive shall enable better transparency and competition for money for public purchases.	
		The topic of public procurements and concessions law is relevant for the USER-CHI products CLICK, INSOC, INDUCAR, SMAC as the deployment of charging infrastructure could include concession or procurement processes by local public authorities. Regarding these processes the implementation laws of the European directive on public procurements and concessions needs to be taken into account. Accordingly, for public contracts above a certain threshold, which is laid out in the directive, specific national procurement procedures need to be complied with.	
4	Directive 2014/25/EU - Procurement by Entities Operating in the Water, Energy, Transport and Postal Services Sector	The directive addresses the harmonization of procurement activities by entities operating in the water, energy, transport, and postal services sector and complements the directives 2014/23/EU and 2014/24/EU. The goal of this directive is to ensure the opening to competition of procurement by such entities. The coordination is needed to ensure the effect of the principles of the Treaty on the Functioning of the European Union (TFEU). The topic of procurement for the transport sector is relevant for the USER-CHI products CLICK, INSOC, INDUCAR, SMAC as the deployment of charging infrastructure could include procurement processes by local public authorities.	CLICK, INSOC, INDUCAR, SMAC
5	Directive 2014/32/EU -Measuring Instruments Directive (MID)	This directive provides the legal framework for harmonising the laws of the member states concerning the availability of measuring instruments on the market. It establishes requirements that need to be satisfied by measuring instruments to be deployed to the market.	all
		The directive and the related national implementation laws are relevant for the USER-CHI project, since charging infrastructure needs to use measuring instruments, which are approved under the MID. Measuring instruments used in charging points fall under the category of electrical energy meters (MI-003) in accordance to Art. 4 (1) and Art. 2 (1) of the MID.	
6	Directive 2016/679/EU General Data Protection Regulation (GDPR)	The EU General Data Protection Regulation (GDPR) grants the right for EU citizens/natural persons to better control and protect their personal data. Therefore, it regulates the processing of personal data and	all

		provides rules regarding free movement of personal data. While aiming for protecting the fundamental rights and freedom of natural persons, it harmonizes and unifies regulations in the EU, aiming at the reduction of bureaucracy and enhancing trust of consumers. The legal requirements deriving out of the GDPR are relevant for USER-CHI since personal data is generated using charging infrastructure by EV drivers. Personal data is thereby generated through the link of the charging point and measurement data with the user's identity. This link leads to a multitude of potential personal data, such as names, addresses or banking information.	
7	Directive 2018/844/EU - Energy Performance of Buildings (EPBD)	The EPBD provides a legal foundation for the energy performance of buildings and is an amendment of the directive 2010/31/EU and 2012/27/EU. The aim of the EPBD is to improve energy efficiency concerning buildings in the EU. Accordingly, it includes measures, e.g., long-term renovation strategies, smart readiness for buildings, the promotion of smart technologies, as well as the support of e-mobility to reach more energy efficient systems in the building sector.	all
		The EPBD is relevant for the deployment of charging infrastructure and therefore relevant for USER-CHI, as it establishes the need for either the installation of charging points or the requirement to provide the infrastructure needed to install charging points at a later point for certain types of buildings. Specific requirements derive out of the EPBD for new residential and non-residential buildings, as well as residential buildings and non-residential buildings, which are undergoing major renovation.	
8	Directive 2019/944/EU - Common rules for the internal market for electricity	This directive introduces additional requirements for the harmonisation of the EU market for electricity. It considers that consumers have an essential role in achieving the flexibility necessary to adapt the electricity system to variable and distributed renewable electricity generation.	SMAC, INDUCAR, INSOC.
		The directive provides relevant regulation on the topic of smart grid services, and non-discriminatory access for CPOs to the grid. Therefore, it is particularly relevant for the USER_CHI products SMAC, INDUCAR and INSOC.	

3.2.2.2 National Legislation and Regulation

The starting point for identifying national legislation and regulation was to review the German **legal framework** of electromobility, charging infrastructure and related fields of law, which influence the deployment of charging infrastructure for EVs.³

The legal requirements vary in accordance with different types of charging infrastructure and business models by means of its deployment or installation in public, semi-public, or private spaces. The link between technical standards and the legal framework arises through references within the applicable legal texts. In general, technical standards are not legally binding and are applied by parties on a voluntary basis or contractual obligation under private law.⁴ However, in cases where European or national regulations explicitly refer to technical standards, they become legally binding.⁵

An overview of the legal fields and corresponding legislation and regulation identified is provided in Table 4 to Table 13.

⁴ BGH, Decision of 14.05.1998, Az. VII ZR 184–97.

⁵ Scientific Services of the German Bundestag, Standards and legislation WD 7 - 3000 - 198/19, December 2019, p.5,

https://www.bundestag.de/resource/blob/677848/f35cfe3e47845c4c9ae2b6839a9e6a2c/WD -7-198-19-pdf-data.pdf.

Table 4: National implementation of the AFID in Germany

National implementation of the AFID

The implementation of the AFI-Directive (2014/94/EU) into the national legal framework fosters interoperability and the goal of nondiscriminatory access to public charging infrastructure for EVs in Europe. However, the detailed implementation of the goals of the AFID into the national legal framework is up to the member states. Therefore, the implementation laws on the AFID are essential for national legal requirements on charging infrastructure.

German (implementation) legislation of the AFID

- The Charging Pole Decree (LSV) is a federal ordinance that defines technical standards for public charging points and serves as a basis for the implementation of technical requirements.
- The Electromobility law (EmoG) allows privileges for EVs within the framework of road traffic law to promote electromobility.
- The Amendment of the Energy Industry Law (EnWG) was established to categorise charging points as final users.
 - The Metering Point Operation Act (MsbG) regulates the use of electricity consumption recording systems.

Table 5: Building and construction law in Germany

Building and construction law

Building and construction law plays a relevant role for the planning and building phase of infrastructure for EVs, because permits based on building and construction law might be needed for the installation of charging infrastructure.

German legislation on the topic: BauO-Bln, GEIG.

- The Berlin Building Code (BauO Bln) is the local building code applicable for charging points
- The Building and Electric Mobility Infrastructure Act (GEIG) is the German law implementing the EPB-Directive.

Table 6: Energy law in Germany

Energy law
The topic of energy law raises various legal requirements, such as the connection to the electricity grid and its stability, which are both mandatory for charging infrastructure.
German legislation on the topic: EnWG, EEG, StromStG, NAV
• The Energy Industry Act (EnWG) is the federal law, which regulates the energy economy in Germany.
The Renewable Energy Sources Act (EEG) regulates the use of renewable energy on the federal level.
The Energy tax law (StromStG) regulates the taxation on the use of electricity.
• The Low Voltage Connection Ordinance is applicable (NAV) regulates the general terms and conditions for the connection to the grid

Table 7: Measuring and calibration law in Germany

Measuring and calibration law

The field of measuring and calibration law is important for the technical products of USER-CHI because it can raise legal requirements for the design of charging point technology.

German legislation on the topic: MessEG, PangV.

and its use for the supply of electricity at low voltage.

• The Measuring and Calibration Act (MessEG) is the federal law, which regulates the use of measuring instruments.

• The Price Quotation Ordinance (PangV) is German consumer protection law, which regulates the sale of electricity amongst othet things.

Table 8: Procurement law, concession law and subsidies in Germany

Procurement law, concession law and subsidies

The topic of procurement and concession law is relevant for the topic of charging infrastructure for EVs, as the implementation of charging infrastructure by companies could include the procurement or concession processes. Moreover, the development of charging infrastructure is often subsidized.

German legislation on the topic: GWB, VGV, SektVO, KonzVGV.

- The Law against restraints of competition (GWB) is the central norm of German cartel and competition law.
- The Public Procurement Ordinance (VGV) is the ordinance regulating the procurement of public orders.
- The Sectors Ordinance (SektVO) regulates the awarding of contracts in the areas of transport, drinking water supply and energy supply.
- The Award of Concessions Ordinance (KonzVGV) regulates the procedure for the award of concessions through a concession grantor.

Table 9: Public, civil, or stakeholder participation in Germany

Public, civil, or stakeholder participation

The topic of public, civil, or stakeholder participation can play an important role in the planning process of charging infrastructure.

German legislation on the topic: None on the topic of deployment of charging infrastructure.

Table 10: Road traffic law in Germany

Road traffic law

The regulatory framework for road use could determine the necessity of permits for charging infrastructure in public spaces.

German legislation on the topic: BerlStrG.

• The Berlin Street Law (BerlStrG) is the local law on the regulation of road use in Berlin.

Table 11: Parking management in Germany

Parking management
To enable the booking feature of parking spots for EV drivers, all national legal requirements as well as possible specific legal privileges given
to EV drivers should be considered.
German legislation on the topic: Local fee regulations.

Table 12: Data access and sharing law in Germany

Data access and sharing

The topic of data access and sharing is relevant as the regulatory framework may implement rights and duties for CPOs in regard of the data generated using their charging infrastructure.

German legislation on the topic: LSV, local administrative practices.

- The **Charging Pole Decree (LSV)** is a federal ordinance that defines technical standards for public charging points and serves as a basis for the implementation of technical requirements.
- Local administrative practices might determine special requirements on the topic of data access and sharing.

Table 13: Data protection law in Germany

Data protection law

The topic of data protection and security is important for the technical USER-CHI products as personal data might be generated by using charging infrastructure and thereby saved.

German legislation on the topic: GDPR, BDSchG, MsbG.

- The General Data Protection Regulation (GDPR) harmonizes the protection of personal data in Europe.
- The Federal Data Protection Act (BDSchG) is the federal law German law on the topic of protection of personal data.

34 D1.3: Technical and legal requirements for USER-CHI solutions

CHARGING V

• The Metering Point Operation Act (MsbG) regulates the use of electricity consumption recording systems.

Table 14 Legal requirements literature review - relevant documents reviewed

Year	Author(s)	Title
/	Federal Ministry of Transport and Digital Infrastructure (BMVI)	Electromobility begins in the municipalities - Checklist for municipal representatives for setting up charging infrastructure.
/	Schmidt, T.	Legally binding standards
2017	Federal Ministry for Economic Affairs and Energy	Innovations in electric mobility - ICT for electric mobility III: Integration of commercial EVs in logistics, energy, and mobility infrastructures
	(BMWi)	
2017	Electric mobility showcase	Cornerstones for the legal framework of electromobility - overview and considerations for action in impact research for the Electromobility Showcase Program
2018	Mühe, S.	Legal framework for billing the charging of EVs
	Dr. De Wyl, C.	
2018	VDE /DKE	Legal challenges of electric mobility - an overview of current problems and possible solutions
2018	Ferwerda, Roland et al	Advancing E-Roaming in Europe: Towards a Single "Language" for the European Charging Infrastructure
2019	Scientific Services of the German Bundestag	Standards and legislation
2020	Dr. Preiß, S.	Electric mobility, charging infrastructure and the grid: Current developments
2020	Köller, C.	What is the status quo with bidirectional charging?
2014	Senate Department for Urban Development and the Environment	Electromobility in Berlin - Guidelines for the expansion of charging infrastructure

3.2.3 Drafting technical and legal questionnaires

The second step of the approach was to draft both technical and legal expert questionnaires based on the results of the literature research. During the drafting process it has been distinguished between technical and legal aspects. As a result, two distinctive expert questionnaires have been established.

3.2.3.1 Drafting Technical questionnaires

The process of drafting the technical questionnaires resulted in the elaboration of a **set of five distinctive sub-questionnaires, whereas each of the five sub-questionnaires focused on one USER-CHI product (CLICK, SMAC, INSOC, INDUCAR and INCAR)**. Each of the questionnaire consists of product-specific questions as well as cross-cutting questions about EVSE. Table 15 provides an overview of the main topics addressed by each questionnaire and the total number of questions in each questionnaire.

Main topics	CLICK	SMAC	INSOC	INDUCAR	INCAR
Energy supply for EV charging		Х	Х		
Parking & Charging	Х	Х	Х	Х	Х
Communication	Х				
Booking & Billing				Х	Х
Planning	Х	Х			Х
Total Number of Questions	35	50	59	36	51

Table 15: Technical questionnaires - main topics covered

3.2.3.2 Drafting Legal questionnaires

The process of drafting the legal questionnaires resulted in the **elaboration of one questionnaire divided into five sub-sections each addressing one of the five technical USER-CHI products.** A variety of answers will provide relevant information for more than one of the products. However, they are only included once in the questionnaire when similar answers are anticipated to prevent repetitions.

The questions are sorted regarding the different fields of law they refer to. Short introductions are inserted at the beginning of each subdivision to illustrate the link between the technical products and the different fields of law. Table 16 provides an overview of the main legal topics covered by the questionnaire and the total number of questions addressed in each subdivision.

Table 16: Legal questionnaire - main topics covered

Covered legal topics – and predicted relevance for specific products at drafting stage of the legal questionnaire	CLICK	SMAC	INSOC	INDUCAR	INCAR
Alternative Fuels Infrastructure Directive	Х	Х	Х	Х	
Energy Law	Х	Х	Х	Х	
Measuring and calibration law		Х	Х	Х	Х
Tender and procurement law	Х				
Building and construction Law	Х	Х	Х	Х	
Public, civil, or stakeholder participation	Х				
Road traffic law					Х
Rules on parking management					Х
Data access and sharing	Х	Х	Х	Х	Х
Data protection law	Х	Х	Х	Х	Х
Total Number of Questions	30	20	3	7	5

3.2.4 Distribution of the technical and legal expert questionnaires

The questionnaires were distributed to the USER-CHI partners and to external experts beginning on 14.10.2020. The technical questionnaires were distributed primarily to the product leaders of the five technical USER-CHI products (see Table 17) as well as external technical experts (see Table 19). The legal questionnaires were distributed to the five USER-CHI city partners and replication cities beginning on the same day, as well as external experts from public city administrations (see Table 18).

Table 17: Distribution of technical questionnaires to USER-CHI partners – overview

	CLICK	SMAC	INSOC	INDUCAR	INCAR
USER-CHI	VMZ	ETRA I+D,	DSI, Enel-X	IPT	ETRA I+D,
Product		Enel-X, ENEA	9		VMZ, QWE
Leaders		QWE			

Table 18: Distribution of legal questionnaires to USER-CHI partners – overview

Finland Germany	Hungary	Italy	Spain	
-----------------	---------	-------	-------	--

USER-CHI	TUR	IKEM (for Berlin)	BUD	RSM, FLO	AMB, MUR
City Partners					

Table 19: Distribution of legal and technical questionnaires to external partners – overview (1)

Austria	Switzerland	Poland	Germany
City of Graz, Energie Graz GmbH & Co KG	Canton of Basel (Office for Environment and Nature Conservation)	Electric Vehicle Promotion Foundation (FPPE)	E.ON Solutions GmbH
City of Vienna	Verband Swiss eMobility (Association)		Has2be GmbH

Table 20: Distribution of legal and technical questionnaires to external partners - overview (2)

France	Norway	The Netherlands	Latvia
City of Paris	SINTEF, Norsk elbilforening	City of Rotterdam, EV	Riga City Council
	(Norwegian Electric Mobility	Box	(Department Riga Energy
	Association)		Agency), Etago/
			emi EV Charging
			Solutions

3.2.5 Analysis and summary of the general requirements (technical and legal requirements)

To summarise and compare the information provided from both USER-CHI partners and external experts, an Excel-matrix document has been established to identify similarities and considerate differences with respect to the five technical USER-CHI products.

To sum up the legal requirements for the five technical USER-CHI products the information provided by the USER-CHI partners and external partners were summarised in a table-matrix for each country/city. The legal requirements are categorized by the relevant fields of law and the questions, which were addressed in the legal questionnaire. The legal requirements are divided into cross-cutting requirements and other requirements, which are only relevant for specific technical products developed within USER-CHI.

In cases where the respondents of the questionnaire were not able to provide information the relevant national requirements are not included. However, in cases where specific legal requirements only apply in some of the analysed national legal frameworks and are not established in others, this is specifically stated as part of the legal analysis.

The national legal framework of Austria, Switzerland and Sweden is partially included to provide information on other relevant countries for the deployment of charging infrastructure in Europe,

other than the countries of the USER-CHI city partners and replication cities in Italy, Finland, Germany, Hungary, and Spain.

3.3 The Identification and Definition of Specific Requirements

To define the specific technical and legal requirements necessary for the development of each of the USER-CHI products and based on the research work carried out and the information from the questionnaires carried out to the experts, explained in the previous sections, the Volere methodology has been followed.

This methodology has been proven successful in previous H2020 projects such as DORA, MEISTER, X-FLEX, NOBEL GRID⁶, WISEGRID⁷, or CROSSBOW⁸, where it was used mainly because of its simplicity. It helped project partners to describe, discuss, formalise, and track the project requirements in an explicit and collaborative manner. Besides being successfully realised in the above-mentioned previous projects, the Volere methodology was selected for the following three reasons:

- 1. It requires simple steps to identify and formalise the requirements in an unambiguous manner.
- 2. It provides an easy process to track and evaluate the progress of the project.
- 3. Several project partners have already experience using the Volere methodology.

The application of the Volere methodology is not only useful in the initial phases of the project for specifying requirements, but it is also helpful in specifying a reference point for the later stages. For example, it is useful for use case analysis to ensure that all important aspects of the requirements are covered by the different defined use cases. But also, during the implementation and management, it can be used to track and evaluate the progress of the individual work packages and the overall project.

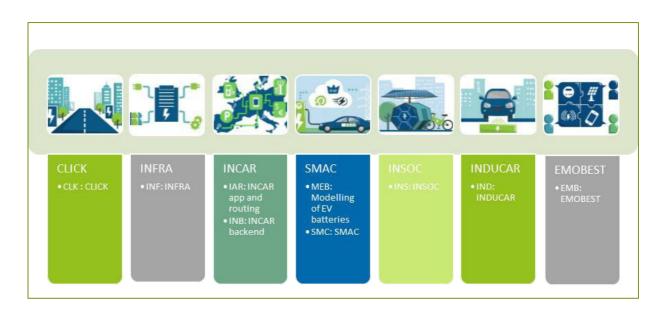
Besides being efficient and easy to use, the Volere methodology provides a mechanism for all partners to specify the requirements in a standard format. Thereby, specifying additional context of a requirement such as the rationale and the acceptance criteria for every requirement helps to build a common understanding of the overall system. Furthermore, defining priorities helps to clarify the focus of the project.

- ⁶ NobelGrid project, n.d.
- ⁷ WiseGRID project, n.d.
- ⁸ Crossbow project, n.d.

3.3.1 Requirement prioritisation

In order to prioritize requirements, the project consortium has introduced five different classes of priorities. These classes range from one (lowest priority) to five (highest priority) and the consortium has defined them as follows:

- **5 High**: Requirements in this class are either realizing a key innovation of the project or they are needed to realize it. These requirements are necessary to achieve the goals of the project.
- **4 3 Medium**: Requirements in this class are not necessary to realize a key innovation but they are necessary or very helpful to realize the application prototypes. These requirements are important to the application developer.
- 2 1 Low: Requirements in this class are necessary neither for realizing a key innovation nor for the application of the prototypes. However, in a broader context possibly beyond the scope of the project, they may be important.


As a consequence, for the success of the project, it is essential to fulfil the requirements with high priority. With respect to providing thorough support for product developers, it is important to realize the requirements with medium priority as well. The requirements with low priority, however, does not have immediate relevance to the project. However, if they are taken into account may provide additional features or benefits for applications or users.

3.3.2 Volere tool

Aiming at defining an optimum and complete list of requirements, a web-based application based on the Volere methodology has been used for gathering the requirements in USER-CHI. This web tool incorporates the concepts in the data model, the templates within its user interface and the procedural patterns in the application business rules. Some USER-CHI partners have already participated in a similar requirement gathering process within the MEISTER project and their experience using Volere methodology for this purpose was satisfactory. This specific tool facilitates the collaborative and interactive work between partners in an iterative and progressive manner.

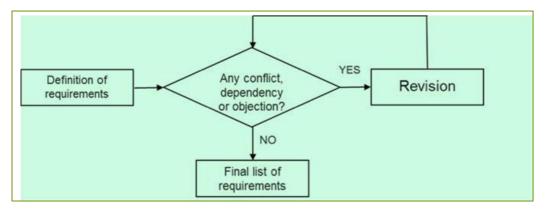

For the USER-CHI requirements gathering, WP1 partners agreed to classify the requirements into categories, one for each of group of developments that constitutes the USER-CHI products. In general, there was created one group for each product however, for INCAR and SMAC it was agreed to split the whole product in two separate groups of requirements. Each requirement is therefore associated to the product (or the specific part of the product) that has to accomplish it, as it is shown in Figure 3.

Figure 3: Groups of requirements defined for the USER-CHI products

For each group of requirements, one person was named as leader and 3-5 partners, depending on each group, were involved as collaborators. Therefore, multidisciplinary groups were created, formed by technical experts, pilot site leaders and product development responsible to define, discuss and agree the requirements for each product. The overall process of Volere as supported by the web tool is specified, revised, and solved by the original author of the requirement. Iteratively, this process is repeated for each set of new requirements that are included in the tool. Once all issues are closed and no more requirements expected, the result constitutes the final list of requirements. The following sub-sections briefly outline the individual steps.

Figure 4: Requirement specification process diagram

3.3.3 Requirement definition

In this first stage, a complete list of the requirements of the USER-CHI solutions that are needed to accomplish the project objectives should be defined.

This initial list of requirements will be refined and expended in future iterations. In this stage, 243 requirements were initially included in the Volere web tool over the course of 5 weeks, from mid-September to mid-October 2020.

The most useful information and the main functionalities of this stage are available at the main page, which could be seen in Figure 5:

- List of requirements: The list of requirements with some additional options.
 - Filtering options: The list of requirements filtered per id., type and/or filtered per author.
 - Expand table: Show/hide some columns, displaying more or less information about the requirement.
- Requirements management: Modification options for requirements.
 - View a requirement.
 - Edit a requirement (only available for the author).
 - Delete a requirement (only available for the author).
- **Requirements tracing**: After the first validation, a new service is made available for keeping track of all the requirements history.

eler	re					
lequirement	s User account					
USER-0	CHI project requirements specification					
The Volere I	Requirements Specification Template is intended for use as a basis for the USER-CHI project requirements specification.					
	status of the requirements specification process is: 📴 Requirements VALIDATION stage - 1 ⁵¹ iteration					
	all the requirements should be approved by all the users. Conflicts and dependencies between requirements must be detected. Furthermore, any objection must be point	ited out.				
(H) Change	to REVISION stage FINISH and CLOSE the requirements definition process					
- USER-CI	11 project requirements list					
🔘 Insert a	new requirement 📲 Show requirements history 👸 Export to CSV 🧏 Export to XML for Testlink					
*****	Fittered by classification group =	V V orpanization =	V 4 4		o Expansi	4
. Id. *	Description	Classification	Туре	A Priority T	Author S	ñ
Unique Id.	A one sentence statement of the intention of the requirement	The classification group which the requirement belongs to	The type from the template	Priority	Author of the	1
CLK_001	CLICK should support the Planning Process of Charging Infrastructure	CLICK	The purpose of the product	5	VMZ (Christian Seidel	0
CUK_002	A feasible location search and location optimization must be based on detailed information: Building structure, type of area, parking pressure, #of registered vehicles, movements per day (deally on basis of cell phones), means of mobility.	слок	Functional and data requirements	2	QWI (Lars Balzer)	
CLK 003	Data availability should be supported by othes, access to city information should be pranted free of charge	сцок	Functional and data requirements	3	OWI (Lars Balzer)	
SMC_001	CPO platforms must implement OCPP 1.6 or 2.0 for smart charging operations	SHAC	Operational requirements	5	ETRA (Antonio Martin López-Asúnsolo)	
5MC_002	From different smart charging inputs SMAC must calculate the optimal charging profile for a charging session. The calculated charging profile will be reported to CPOs, but it is responsability of CPOs to execute smart charging operations.	SHAC	The scope of the product	5	ETRA (Antonio Martin López-Asúnsolo)	
SMC_003	CPOs must implement OCPP 2.0 for V2G operations	SNAC	Operational requirements	4	ETRA (Antonio Martin López-Asúnsolo)	1
SMC_004	SMAC services will not be available for charging stations not involved in INCAR platform	SNAC	Operational requirements	5	ETRA (Antonio Hartin López-Asúnsolo)	
SMC_005	CPOs must inform if their EVSEs support smart charging operations	SHAC	Operational requirements	4	ETRA (Antonio Hartin López-Asúnsolo)	ľ
SMC_006	EHSPs should inform about users default charging profile in order to consider it as smart charging input	SMAC	Operational requirements	4	ETRA (Antonio Hartin López-Asúnsolo)	
1.1.4.1.0	SMAC should specify a prioritization for the identified smart charging inputs	SMAC	Operational requirements	6	ETRA (Antonio Martin	ŝ
TO REVIOU	CPOs should inform about locations restrictions such as the maximum power the EVSEs can provide	SMAC	Operational requirements	4	López-Asúnsolo) ETRA (Antonio Martin	
and the second second	Energy prices should be aspect of smart charging	SHAC	The scope of the work		López-Asúnsolo) QWI (Lars Balzer)	
	SHAC should implement Planned start-charging time for slow charges	SMAC	The purpose of the product	-	ENEA (natascia	
SMC_011	SMAC must include an assessment of V2G impact on battery life	SMAC	Operational requirements		andrenacci) ENEA (natascia	
SHC 012	SHAC should give an indication of the advantages of a smart charging operation vs generiv charging operation (less electric load, charging costs, battery life	SMAC	Functional and data requirements		andrenacci) GEW (Tobias Lange)	
STREET, VALUE	prolongation,) to CPO and end user SMAC should (as the technical necessities (or products) to make smart charging operations implementable.	SMAC	Users of the product	3	GEW (Richard	
	SHOE should not the recent of medications (or products) to make share charging operations implementation. SMAC must implement 0CPI 2.2 modules related with Smart Charging Service Providers (SCSP)	SMAC	Operational requirements		Kemmerzehi) ETRA (Antonio Nartin	
	SHAC must implement UCV12.2 modules related with Shart Charging Service Providers (SCSP) SHAC needs to consider interoperability requirements deriving from Art. 4 (4) API-Directive (compatibility with Type 2 power sockats)	SMAC			López-Asúnsolo) IKEM (Anne	
			Legal requirements		Freiberger) IKEM (Anne	
to stand the	Requirements deriving from European / national calibration and measurement laws need to be taken into acount for different billing models	SMAC	Legal requirements	- 4	Freiberger) IKEN (Anne	
	SMAC needs to enable ad-hoc charging processes, as required by Art. 4 (9) AFI-D	SMAC	Legal requirements	5	Freibarger)	
SMC_018	SMAC needs to consider national regulation on the topic of V2G - if existing	SMAC	Legal requirements	5	IKEM (Anne Freiberger)	

Figure 5: Volere main page

- Insert a new requirement: Opens a new window (
- Figure 6) to allow adding a new requirement. All the fields are required except for the "Comments" field which is optional. The required fields are:
 - ID: The scope of this requirement. Appended by an automatically generated sequential number, this ID uniquely identifies each requirement. This ID will be generated after the requirement has been added. (see Figure 7).
 - \circ $\;$ Classification: The group of requirements which the requirement belongs to.
 - Description: A one sentence statement which describes the intention of the requirement.
 - Type: The type of the requirement as defined by Volere.
 - o Rationale: A justification of the requirement.
 - Acceptance criteria: A measurement of the requirement for further verification that the solution matches the original requirement.
 - Priority: The importance for the customer of successfully implementing the requirement

lere	🙈 Antonio Martín López-Asúnso 🚊 ETRA I+D
	New requirement
Please, insert as many e validated on the fol	requirements as missing information on the project requirements list. These requirements w lowing iteration.
	New requirement
Classification	INFRA (INF)
Description	Legal topics must be considered in INFRA
Туре	Functional requirements - The scope of the product
Rationale	
Acceptance criteria	
Priority	5 V Scale from 1 = low priority to 5 = high priority
Comments	

Figure 6: Window to insert a new requirement in Volere tool

Velere	San Maria Tomás ETRA I+D	Pérez
USEF Id.	R-CHI project requirement detail on 3 th iteration	
Classification	INFRA	
Description	Legal topics must be considered in INFRA	
Туре	Functional requirements - The scope of the product	
Author	ETRA (Antonio Martín López-Asúnsolo)	
Date	03/12/2020	
Rationale		
Acceptance criteria		
Priority	5	
Comments		

Figure 7: USER-CHI project requirement details

3.3.4 Requirement Validation

After the initial definition of requirements, the validation process begins. All the requirements should be approved by all the users. At this stage, conflicts and dependencies between requirements must be detected. Furthermore, any objection must be pointed out:

- **Objection**: A reason or argument due to disagreement, opposition, refusal or disapproval of the requirement.
- Dependency: Requirements that have some dependency on other requirements.
- **Conflict:** Requirements that cannot be implemented if another requirement is implemented or there is a conflict due to an insufficient definition of the requirement.

How to insert an objection

An **Objection** is a reason or argument offered in disagreement, opposition, refusal, or disapproval of the requirement. To introduce an objection in VOLERE, the procedure is as follows:

- Identify the Requirement number on which we want to make the objection.

IAR_039	Incar app must be multilingual	INCAR app and routing
IAR_040	Should show information of falsely blocked charging point to end user.	INCAR app and routing
LAR_041	INCAR must consider legal privileges for parking of EVs in cities - if available	INCAR app and routing
IAR_042	INCAR must take into account the concept of privacy by design based on the GDPR	INCAR app and routing
LAR_043	INCAR needs to consider national data protection laws	INCAR app and routing
INB_001	INCAR must implement OCPI 2.2 version	INCAR Backend and Dashboards
INB_002	INCAR must manage, store and redirect charging transactions information	INCAR Backend and Dashboards

Press [icon to add a new Objection.

endencies,	conflicts and objections			
insert the dep	pendencies and conflicts detected on the list above i			🍦 Go downwan
Id.	Dependency	Requirements revised	Validator	
		There are no dependencies on the requirements light		
14.	Conflict	Requirements revised	Validator	1.0
		There are no conflicts on the requirements list:		
14.	Objection	Requirements revised	Validator	
		There are no objections to the requirements list!		

- Select the requirement number on which we want to make the objection and write the description of the Objection
- The new objection has been created and the Validator and Revisor for that requirement has been assigned. The Validator is the person who has introduced the objection and the Revisor is the person who generated the requirement.

Ld.						Requirements ret	vised	Validator			
					There are no dep	endencies on the requirements lo	ati				
Id.	Conflict					Requirements re-	vised	Validator			
					There are no o	orificts on the requirements list?					
Id.	Objection	Ý				Requirements rev		Validator			
GBJ_1336	Legal topics	to be implemented in I	NCAR should be identified in INI	fra		• 188M (Anne Freib • 1AR_043	erger)	ETRA (Antonio Martin Lópe	r-Azúnsolo)	21	
ase, insert the	shpection about th	he requirements list and	select the requirements involved	in this objection.							
	e molemented in	INCAR should be identif	field in TRAFE 4								
Anguirements i											
CLK_001	and the second se	CLK_002	CLK_003	CLK_004	C (1.K_005	C CLK_000	C CLK_007	C CLK 000	C CLK 009	C CLK 010	
CLK. 011		CLK 012	CLK 013	CLK 014	C CLK_015	CLK 016	CLK 017	CIK 018	CLK 019	CLK.020	
CLK_071		CLK_022	C CLK_024	CLK_025	CLK_026	CLK_027	CLK_028	C CLK_030	CLK_031	CLK_032	
CLK_033		CLK_034	C CLK_035	CLK_036	C CLK_037	CI.K_038	CLK_039	C CLK_040	C CLK_041	CLK_042	
CLK_043		C CLK 044	CLK_845	CLN_046	C CLK_047	C EMB_001	C 8MB_002	C00_8M3 □	C EMB 004	C EMB_005	
EMB 006		EMB 007	C ENB 008	C EMB 009	C ENB 010	C EMB 011	C ENB 012	E 1948 013	C EMB 014	C EMB 015	
THE 016		C EMB 017	C 210 010	C EHE 019	C 640_020	C 6140 021	C 6140 022	C 1000 023	C 648 024	C GNR 001	
GNR_002		1AR_001	D 148_002	C 1AR_003	C 148_004	TAR_005	C 1AR_006	IAR_007	000_NAL	C LAR_009	
TAR_010		TAR_011	IAR_012	D 1AR_013	C 148_014	1AR_015	TAR_016	IAR_017	TAR_018	C LAR_019	
IAR_020		140_BAR_021	C 144.022	C 1AH_023	D 148_024	C 1AH_025	C 148_026	C 1AR_027	D 148.028	C 1AR_029	
IAR 030		148_031	CEO_BAL	C 1AH_033	AR 034	C 1AR_035	D 1AR 036	D 1AR_037	TAN	D 168,839	
IAR_048		AR_041	D 148_042	Z 1AR_043	INB_001	D INB_002	D INB_003	D 1NB_004	TINB_005	D INB_006	
INE 007		008 INB_008	C 1NB_009	D INB_010	D 1NB_011	INB_012	D INB_013	D 1NB_014	D INB_015	D 188_016	
INE_017		D 1NB_018	C 1908_019	D 1NB_020	D 1NB_021	D 1NB_022	D INB_023	D 1NB_024	D INB_025	TNB_026	
THB_027		1ND_028	TND_029	D 1NB_030	D INB_031	D 1NB_032	D 1NB_633	C 1NB_034	TN8_035	C 1NB_036	
INE_037		INB_038	TINE_039	C 1NB_040	INR_041	TNB_042	D INB_043	TNB_044	TNB_045	D IND_046	
1NB_047		INB_048	C 3NB_049	C 1NB_050	D IND_001	D IND_002	D IND_603	D IND_004	D IND_005	D 1ND_006	
IND_007		D IND_008	IND_009	D 1ND_010	UND_011	TND_012	D IND_013	D IND_014	IND_015	D 1ND_016	
IND_017		D IND_018	C IND_019	D IND_020	TND_021	D IND_022	D 1ND_023	D 1ND_024	TND_025	D 1ND_026	
110_027		020_0MI	D 1107_001	C 1NF_002	INF_DO3	TINF_004	C INF_005	TINF_000	D INF_007	D INF_000	
INF_009		D INF_010	C 1NF_011	D 1NF_012	D INF_013	INF_014	D INS_001	D INS_002	C 1N5_003	D 1N5_004	
INS_005		INS_006	D 1N5_007	C 1N5_008	D HEB_001	D MEB_002	C MEB_003	HEB_004	□ HED_005		
HER_007		00_HER_008	C HEB_000	C MEB_010	- HEB_011	MER_012	MER_013	G \$840_001	SNC_002	D \$340_003	
SMC_004		SHC_005	□ sHC_006	C SHC_007	C SHC_000	SNC_000	G \$94C_010	G SNC_011	G 5MC_012	SHC_013	
SHC_014		SHC_015	SHC_016	SMC_017	SHC_018						

How to insert a conflict

Two or more requirements are in **Conflict** if those requirements cannot be implemented if another requirement is implemented. To introduce a conflictin VOLERE, the procedure is as follows:

- Identify the Requirements number on which we want to make the conflict.

INB_047	Dashboard - real time access to see the current situation of loading in the city and previous trends	INCAR Backend and Dashboards
INB_048	Backend - maintenance division scenario (if the charging point is not used, no costs should occure, as otherwise CPOs willingness to join is low)	INCAR Backend and Dashboards
NB_049	Tariffs information must be provided by CPOs	INCAR Backend and Dashboards
NB_050	When other EMSP:s are connecting to the hub via OCPI, the demand for all the functionalities needs to be optional.	INCAR Backend and Dashboards

Press 🜔 icon to add a new Conflict.

ependencies,	, conflicts and objections			
e, insert the de	ependencies and conflicts detected on the list above o			& Go downwards
Id.	Dependency	Requirements revised	Validator	0
		There are no dependencies on the requirements list:		
14.	Conflict	Requirements revised	Validator	0
		There are no conflicts on the requirements luti		
14.	Objection	Requirements revised	Validator	C
		There are no objections to the requirements list		
				· Go apwards

- Select the requirement numbers on which we want to make the objection and write the description of the Conflict

Alere									Ardunto Hartin Lipez-Asim
				1100 P. 111	oject requirements confi				
				OSCH-CHI pr	ojett requirements tioni	ici -			
Conflict	operated on the requirements in	t and select the requirements invo							
	to apendy tariffs or main. The au	societed cost of charging transact	ions is defined by CPOs and EMSE	4					
Requirements involve									
CLN 001	CLK 002	C (1K 003	CIK 004	C (LK 005	C (1K 000	C CLK 007	C CLK 000	C CLK_009	CLK 010
CLK 013	C CIK 012	C CLK 913	C CLK 014	C CLK 013	C CLK DIE	CIK 917	CLK OIS	C CLK_019	CLK 020
CLK 021	C CLK 022	CLK_024	CLK_025	C CLK_026	C CLK_927	C CLK 028	C CLK_030	CIK 031	C CLK 032
CLK 033	CLK 034	CLK .035	CLR_036	C CLK 037	C CLK 038	CLK 029	CLK 040	CLK 041	CLK 042
CLK 043	C CLK 044	C CLK 045	C CLK 046	C CLK 047	C EMB 001	C 2240 002	C 000 000	C 2248 004	C 2140 005
ENB_006	C EN0.007	C EMB_008	C EMB_009	C EM8_010	C EH0_011	C 6M8_012	C 6MB_013	EM8.014	C EMB_015
2 EMB_016	C 2MB_017	C EMB_010	C 2040 019	C 1140_020	C 2940 021	C 210 022	C 6M8 022	C 2140 024	GNR 001
GNR_002	1AR.001	D 1AR.002	C 1AR_003	C 1AR_004	TAR_005	C TAR.,006	IAR_007	C 1AR_000	TAR_009
148 819	TAR BIS	1 1AH 912	IAR 013	1AR 014	1AR 015	1AR_016	D 1AR_017	D 148_018	C 1AR 019
IAR_020	C 148_021	1AR_022	C 1AR_023	1AR_024	C TAR_025	C 1AR_026	C 1AR_027	□ 1AR_028	C 168_029
1AR_030	D 148.031	C 1AR_032	IAR_033	D 1AR_034	IAN_035	C 148_036	1AR_037	T LAR OTH	1AR_039
IAR_640	D 148_041	D 1AR_042	CHO_RAL	D 1NB_001	C 1NIL_002	C IND_003	INB_004	TNB_005	ENB_006
1NB_007	TNB_008	C 1NB_009	C 1NB_010	D IND_011	D 1NB_012	D 1NB_013	TNB_034	D 1NB_015	D 1N0_016
IND_017	D IND_OID	TNB_019	INB_020	C IND_021	D 1NB_022	TIND_023	INB_024	TNB_025	THB_026
INB_027	1NB_028	D INE_029	INB_030	C INE_031	D INB_033	C DNB_033	D INB_034	C INB_035	D IND_036
1NB_037	INB_038	C 1N8_039	C INB_040	D IND_041	C 1NB_042	D INB_043	D 1NB_044	D INB_045	D 1NB_046
IND_647	2 1NB_048	Z 1N5_049	TNB_050	D 1ND_001	IND_002	D IND_003	D IND_004	TIND_005	D IND_004
1ND_007	D 3ND_000	C 1ND_009	D 1ND_010	D IND_011	D 1ND_012	D IND_013	D 1ND_014	IND_015	D 1ND_016
110_017	IND_018	D 1N0_019	D IND_020	TND_021	IND_022	D IND_023	D IND_024	TND_025	TH0_026
IND_027	D 1ND_028	C INF_001	TNF_002	D INF_003	TINF_004	C INF_005	C INF_006	D INF_007	□ INF_008
INF_005	D INF_010	C INF_011	D INF_012	C 1NF_013	D INF_014	D INS_001	D 1NS_002	D 1N5_003	□ TNS_004
INS_005	D 1N5_006	TINS_007	D 1NS_008	C MEB_001	C MEB_002	D MER_003	C MEB_004	- MER_005	000_B3H [
HED_007	000 HEE 008	000_B3H	C MEB_010	D MEB_011	C MED_012	C MEB_013	G \$HC_001	SHC_002	SHC_003
SMC_904	D SHC_005	C SHC_906	C SHC_007	SHC_005	C SHC_009	SHC_010	SHC_011	SHC_012	SHC_013
SMC_014	SMC_015	SMC_016	SHC_017	SHC_018					

- The new conflict has been created and the Validator and Revisor for that requirement has been assigned. The Validator is the person who has introduced the objection and the Revisors are the people who generated the requirement.

					4 Go downwa
Id.	Dependency		Requirements revised	Validator	
		There are no dependencies on the rep	irements list!		
14.	Conflict		Requirements revised	Validator	
CONF_130	The aim of INCAR is not to specify tariffs or costs. The associated cost of charging transactions is	defined by CPOs and EHSPs	ETRA (Antonio Martín López-Asimsnio) TRH, 049 TUR (Juno Saen) TUR (Juno Saen) TUR 0.040	ETILA (Antonio Hartin López-Asúnsolo)	2 ×
14.	Objection		Requirements revised	Validator	
082_1336	Legal topics to be implemented in DICAR should be identified in DIFRA.		INEM (Anne Preiberger) IAR, 043	ETRA (Antonio Martin López-Animsolo)	2 X
					🛊 Go upwa
USER-CHI	project requirements created on 1 st iteration				
case, insert i	es many requirements as missing information on the project requirements list. These requirements	vil be validated on the following deration.			
s 1d. *	Description	Туре	🚕 Author 🦄		
VF_015	Legal topics must be considered in INFRA	The scope of the product	ETRA (Antonio Martin López-Asúnsolo)	(RØ)	

How to insert a dependency

Two or more requirements are **Dependent** if their fulfilment depend on the partial or total implementation of other requirements. To introduce a dependency on VOLERE, the procedure is as follows:

- Identify the Requirements number on which we want to make the dependency.

18_012	NES would include the study of the optimal power supplied by renewable sources and the capacity of batteries to be installed (i.e. if EV charging station integrated with photovoltaic modules)	Modelling of EV batteries and charging solutions	The scope of the product	3	ETRA (Maria Tomás Péres)	i i
88_013	HEB should consider both AC and DC charging powers svalable in the existing in the USER-CHI demo stes.	Modelling of EV batteries and charging solutions	The scope of the work	4	ETRA (Maria Tomás Pérez)	R.
MC 10071	PPD plotherms must implement OCPE 1.6 or 2.0 for smart theraping operational	82228	Specificani recommenta	8	ETILA (Antonio Martin) Lágara Anoranio	R .
SMC_002	From different amart charging inputs SMAC must calculate the optimal charging profile for a charging session. The calculated charging profile will be reported to CPOs, but it is responsability of CPOs to execute smart charging operations.	SMAC	The scope of the product	5	ETRA (Antonio Martin López-Asúnsolo)	i.
SMC_003	CPOs must implement OCPP 2.0 for V2G operations	SMAC	Operational requirements	. 4	ETRA (Antonio Hartin	2
AR_032	INCAR must have its own payment and accounting processes for authorized users	INCAR app and routing	The scope of the product	5	GEW (Richard Kemmerzehl)	(R.
AR 633	The AR applicant front for element acting charging preferences of an implicit charging second	INCAR appland touting	Functional and data requirements		TTRA (Antonio Martie)	
AR_034	INCAR app should display the SoC (if technically available) of the cars during charging process	INCAR app and routing	Functional and data requirements	4	ETEA (Antonio Martin López-Asúnsolo)	1
40.015	THE AT must be developed to be as fails. Thereased families"	THE AR AND AND IN THE	The client, the customer and		GEW (Richard	

Press [] icon to add a new Dependency.

s, conflicts and objections			
Sependencies and conflicts detected on the list above or any			
Dependency	Requirements revised	Validator	
	There are no dependencies on the requirements liat:		
Conflict	Requirements revised	Validator	
	There are no conflicts on the requirements list!		
Objection	Requirements revised	Validator	
	There are no objections to the requirements list!		
	Inere are no aligettions to the requirements sol		

- Select the requirement numbers on which we want to make the objection and write the description of the Dependency

areke									🤱 Antonio Hartle Liper Anio 🚊 ETRA 1+0
				USER-CHI proje	ect requirements depend	ency			
core, must the depend repondency	may detected on the requirement	to list and select the requirements	involved in this desender cy.						
	a hes sense when smart charalou	operations are available							
equirements involve	6								
CLK_001	CLK_002	CLK_963	CLK_004	C CLK_005	CLK_006	C CLK_007	CI.K_005	C CLK_009	CLK_010
CIK_011	C CLK_012	CLK_013	CIK_014	C CLK_015	CLK_016	C CLK_017	CLK_018	CLK_019	CLK_020
CLK_021	CLK_072	CLK_024	CLK_025	CI.K_026	CLK_027	CLK_028	CLK_030	CIK_031	CLK_032
CLK_033	CLK_024	CUK_035	CLK_036	CLK_037	C CLK_038	CLK_039	C CLK_040	C CLK_041	CLK_042
CLN_043	C CLK_044	C CLK_045	C CLK_046	C CLK_047	EM8_001	C 6100 002	EMB_003	EM8_004	C EMB_005
EM8_006	D 2HB_007	C 1948_008	C 290_009	D 2140_010	C 2140_011	C 210_012	THE_013	EMB_014	C EMB_RES
EMB_016	C EH0_017	C EHB_038	010_BMB [EH8_020	C EN0_021	C EMB_022	C #H8_023	EM8_024	GN8_001
GNR_002	D 144_001	AR_002	E tAR_OOT	TAR_004	TAR_005	C 1AN_006	IAR_007	BOG_RAI	000_RA1
010_BAI	D TAR_011	1AR_012	CIO_HAL	TAR_014	144_015	TAR_016	D 1AR_017	C TAR_018	C TAR_019
1AR_020	D 148_021	TAR_022	10 IAR_073	D 148_024	TAR_025	IAR_026	C 1AR_027	1AR_028	C 148_029
3 1AR_030	C 848_831	C 1441_032	Z 1AR_033	D 3AR_034	C 1AN_BAS	D 148_036	D 148_037	C LAN_USS	C 148_039
IAR 040	C 148_041	D 148_042	140_RAI	D 1NB_001	C 1NH_003	D 1ND_003	D INB_004	C 1NB_005	C 1NB_006
1 1NB_007	D 1N8_008	C 2708_009	TNR_010	D #NO_023	D 3NH 012	C 1NB_03.3	1718_014	T 198 015	D INB_016
1NB_017	D 1ND_018	C 21VB_019	IND_020	11/10_0/21	D 1NIL_022	D 1ND_023	D 1NB_024	TNB_025	D 1ND_026
1 1NIS_027	D INB_028	D 3NB_029	D 1NB_020	IND AND ALL	D 1NR_032	D 1NB_033	INB_034	C 1805_035	D 1NB_036
INB_037	C 1NB_038	D 1N0_039	C 1N8_040	D 1NB_041	C 1NB_042	D 1N0_043	D IN8_044	C 1N0_045	C INB_046
IND_047	INB_048	D 1NB_049	D 1NB_050	D 1ND_001	D 1ND_002	C 1ND_003	1ND_004	D 1ND_005	C 1ND_006
IND_007	000_DAL	D IND_DO9	D 1ND_010	D IND_011	C 1ND_012	D 1ND_013	D 1ND_014	IND_015	C IND_016
IND_017	D IND_010	C INO_019	TND_020	D IND_021	TND_022	D DND_023	TND_024	D IND_025	D IND_026
110_022	D IND_028	C 1NF_001	D 1NF_002	CO_1WE_003	D INF_004	D INF_005	D 1NF_006	C 1107_007	C INF_DOG
1NF_009	D INF_010	D 1NF_011	D INF_012	D INF_013	D 1NF_014	D INS.001	T 1NS_002	C ENS_003	C INS_004
1NS_005	D 1NS_006	D 1NS_007	D 1N5_008	C MEB_001	C MEB_002	C MEB_003	C MED_004	C HEB_005	C HEB_006
HED_007	D ME0_000	- HEB_009	- MED_010	C MEB_011	HEB_012	D HER_013	SH0C_001	SHC_002	G SHC_003
5MC_004	C SHC_005	SHC_006	SMC_007	SHC.008	SHC_009	SHC_010	SHC_011	C 5MC_012	SHC_013
SHC_014	SHC_015	SHC_016	SHC_017	□ SHC_018					

Save Cancel

The new dependency has been created and the Validator and Revisor for that requirement has been assigned. The Validator is the person who has introduced the objection and the Revisors are the people who generated the requirement.

ependent	ses, conflicts and objections			/
se, insert ti	e dependencies and conflicts detected on the list above or any other objection.			Go downwa
Id.	Dependency	Requirements revised	Validator	
08P_332	Set charging preferences has sense when amort charging operations are available	 ETRA (Antonio Martin López-Asúnsolo) IAR_033 SMC_001 	ETRA (Antonio Hartin López-Asúnsolo)	2×
Id.	Conflict	Requirements revised	Validator	
ONF_130	The aim of DICAR is not to specify tariffs or costs. The associated cost of charging transactions is defined by CPOs and EMSPs	ETRA (Antonio Martin López-Asúmolo) TNB (Jussi Seen) TNB_045	ETRA (Antonio Martin Lúpez-Asúnsolo)	× S
Id.	Objection	Requirements revised	Validator	
03_1336	Legal topics to be implemented in DICAR should be identified in DIFRA	DOEM (Anne Freiberger) - TAR, 043	ETRA (Antonio Martin López-Asúnsolo)	2 X

3.3.5 Requirement Revision

After the validation, the revision process begins. The dependencies, conflicts and objections highlighted by the experts during the Validation stage must be revised and solved by the requirement's author. However, if the authors do not agree with the validator's comments, they can include their own viewpoint in the "Revisor's comments" section for explanations and requirement clarifications. In this stage, the authors of the requirements pointed to be revised are able to add comments to the dependency, conflict or objection.

Step 1: Check the requirements with issues

Each partner should **identify** each one of the requirements that have been **impacted by an objection, conflict or dependency,** by checking the Requirement revised column in the Dependencies, conflicts and objections section.

Id.	Dependency Set charging preferences has sense when smart charging operations are available	• E Ma Ast	quirements vised TRA (Antonio rtín López- insolo) R_033	approvement	Setting ch	1 by ETRA (Antoni	will be av	Go downward öpez-Asúnsolo): ailable when the post
	Dependency				Revisor's o	comments		👋 Go downware
ape, revi								👋 Go downward
	encies, conflicts and objections se the dependencies and conflicts detected by the validators on the list above or any other objections.							
	Total: 245 n	equirements						🔶 Go upwar
4C_018	SMAC needs to consider national regulation on the topic of V2G - if existing	SMAC	Legal re	quirements	5	IKEM (Anne Freiberger)		
4C_017	SMAC needs to enable ad-hoc charging processes, as required by Art. 4 (9) AFI-D	SMAC	Legal re	quirements	5	IKEM (Anne Freiberger)		
	Requirements deriving from European / national calibration and measurement laws need to be taken into acount for different billing models	SMAC	Legal re	quirements	4	IKEM (Anne Freiberger)		•
4C_016	(compatibility with Type 2 power sockets)	SMAC	Legarre	quirements		Freiberger)	1.54	1.00

Figure 8: Dependencies, conflicts and objections section

Step 2: Add comments in the issues

The requirements impacted with an objection, conflict or dependency have the "Add comment" button enabled. The revisor(s) (the partner who introduced the requirement) are the people in charge to start writing comments (see Figure 9)

The comments could be oriented to explain that the requirement:

- Is **confirmed as described** (could be a misunderstanding or maybe the requirement description was confusing).
- The revisor notice that the requirement should be **edited.**

Velere		🚨 Antonio Martín López-Asúnsolo <u>أ</u> ETRA I+D
Co	omment about project requ	uirements objection
your thoughts. It sounds l	ike the user should not only be a	jection, but I would like to know more about ble to start and end a charging session with the h use case do you have in mind exactly?
com		erences during charging session. This requirement) the eMSP can send Charging Preferences on behalf of OCPI 2.2.
Comment		
	Save	Cancel

Figure 9: Example of a comment of a project requirement objection (1)

After saving the comment introduced, the comment appears in the mentioned objection, as it is shown in Figure 10.

	IAR_029		U
Not an objection, but I would like to know more about your thoughts. OBJ_1350 It sounds like the user should not only be able to start and end a charging session with the app but set preferences during the charging session? Which use case do you have in mind exactly?	• ETRA (Antonio Martín López- Asúnsolo) IAR_033	VMZ (Jan- Niklas Willing)	Add comment Comment 1 by ETRA (Antonio Martín López-Asúnsolo) Yes, the user should be able to set preferences during thanging session. This requirement comes from OCPI 2.2 specification: '() the eNSP can send Charging Preferences on behalf of the driver'. Please, see section 9.1.3 of OCPI 2.2.
	GEW (Richard	VMZ (Jan-	

Figure 10: Example of a comment of a project requirement objection (2)

In this case, the revisor has detected that the Requirement needs extra information. Therefore, after write the comment, the requirement should be edited, as it is shown in Figure 11 and Figure 12.

Figure 11: Editing a requirement during the revision phase (1)

<i>l</i> eler	د المعندية Antonio Martín López-Asúnsolo أي ETRA I+D
	Requirement edition
Id. Classification	IAR_033 INCAR app and routing
Description	INCAR app users must be allowed setting charging preferences of an ongoing charging session
Туре	Functional requirements - Functional and data requirements
Rationale	Support EV driver charging preferences
Acceptance criteria	
Priority	4 V (Scale from 1 = low priority to 5 = high priority)
Comments	Inputs: - profile type: cheap, fast or green - departure time - energy need This requirement comes from OCPI 2.2 specification: "For a lot of smart charging use cases, input from the driver is needed (). Via a PUT request on the Sender Interface, during an ongoing session.the eMSP can send Charging Preferences on behalf of the driver".

Figure 12: Editing a requirement during the revision phase (2)

110

Step 3: Mark the objection, conflict or dependency as revised

The person who wrote the requirement, should **mark the issue as revised** they have written the comments and edited the requirement (if necessary). (Figure 13)

Aplicaciones		volere.etra-id.com dice Has been the requirement revised?		I 📕	Meteor 📋 Auth 🔮 Alfresco » Panel de 🧧 Volere
OBJ_1346	Voice command will be available for all formulars that are co 't be controlled over the keyboard as this is quite a complex features we do not see the necessity to implement full voice		Aceptar Car	Willing)	
OBJ_1347	Could you please specify what you exactly propose in this re available we can check if an implementation makes sense and the use case	d is feasible, but right now, I don 't really understa	IAR_001	IZ (Jan- Niklas Willing)	
OBJ_1348	Not really an objection, but: A precondition would be that a dynamic interface is available booking system, and accounting information to provide those	so that INCAR can access location, status, tarifs, functionalities in the app	• GEW (Rich Kemmerzehi IAR_028	Niklas Willing)	
OBJ_1349	Not an objection but: Precondition is that tarifs and available timeslots can be requ	ested over dynamic API and timeslots can be book	GEW (Rich Kemmerzehl IAR_029	Niklas Willing)	
	Not an objection, but I would like to know more about your th It sounds like the user should not only be able to start and er during the charging session? Which use case do you have in r	nd a charging session with the app but set preferen	• ETRA (Antonio Martín Lópe Asúnsolo) nces IAR_033	VMZ (Jan- Niklas Willing)	Add comment • Comment 1 by ETRA (Antonio Martin López-Asúnsolo) [edit](delete]: Yes, the user should be able to set preferences during charging session. This requirement comes from OCPI 2, specification: ") the eMSP can send Charging Preferences on behalf of the driver", Please, see section 9.1.3 of OCPI 2,2.

Figure 13: Mark the requirement objection as revised

Step 4: Mark the objection, conflict or dependency as validated

The person who detected the conflict / dependency / objection should check the changes and comments made. If agrees, should mark the requirement as **validated**. If not, he or she should **argue the reason why.** (Figure 14)

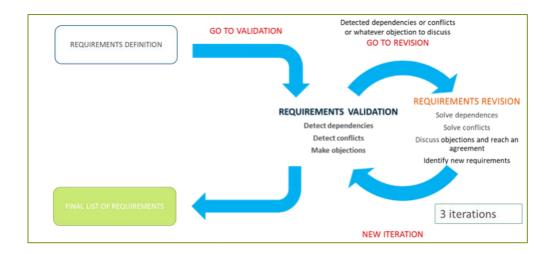

Id.	Dependency	Requirements revised	Validator's approvement	Revisor's comments
0EP_332	Set charging preferences has sense when smart charging operations are available	• ETRA (Antonio Martin López- Asúnsolo) IAR_033 SMC 001	ETRA (Antonio Martín López- Asúnsolo)	Add comment • Comment 1 by ETRA (Antonio Martin López-Asúnsolo) [editi/delete setting chroging preferences will be available when the post suppor smart charging operations

Figure 14: Mark the requirement objection as validated

3.3.6 Iterations and final results

The previously explained process is repeated several times in order to include newly defined requirements, as shown in Figure 15.

Figure 15: Volere iterative process

Once the final iteration is finished, all issues have been closed, and no more requirements are expected, the final list of requirements is available. The Volere web tool not only provides this final list, but also allows to access the history of each requirement and its associated issues, so any consultant can keep track of the path that leads to the definition of each requirement.

In the case of USER-CHI, three iterations have been performed. The first one lasted one month each (two weeks for the validation stage and two for the revision), while the last two iterations took two weeks each (one per stage). This process successfully completed with a total list of 259 requirements.

During the iterative process, several dependencies, conflicts, and objections among the requirements were detected and solved by the consortium, for each one of the USER-CHI products. Those issues are presented and described in Sections 5.1.2 (CLICK), 5.2.2 (INCAR), 5.3.2 (SMAC), 5.4.2 (INSOC), 5.5.2 (INDUCAR), 5.6.2 (INFRA), 5.7.2 (EMOBEST).

4.General Technical and Legal Requirements

This chapter presents the results of the identification and definition of general requirements. The cross-cutting requirements for USER-CHI products are presented in 4.1. USER-CHI product specific general technical and legal requirements are presented in 4.2.

4.1 Cross-cutting technical and legal requirements for the technical USER-CHI products

4.1.1 Cross-cutting technical requirements for CLICK, INCAR, SMAC, INDUCAR

This section provides an overview of the general cross-cutting technical requirements that must be met on a national level of the USER-CHI countries and five other countries for the implementation of the USER-CHI products. The results are presented as tabular formats. The overview covers the following information received from the countries/cities tagged. The residual information is pending.

	Finland (TUR)	Germany (IKEM, QWI, IPT, VMZ, E.ON)	Hungary (BUD)	ltaly (ENEA, Enel-X, DSI)	Spain (AMB, MUR, ETRA)
USER- CHI Countrie s	\checkmark	\checkmark		\checkmark	\checkmark
	Austria (City of Graz, Energie Graz)	France (City of Paris)	The Netherlands (City of Rotterdam, EV Box)	Latvia (City of Riga, Etago/emi EV Charging Solutions)	Switzerland (Canton of Basel, Verband Swiss eMobility)
Other Countrie s	\checkmark				(√)

Table 21 Technical requirements – feedback results from USER-CHI and external partners

Given the nature of the electric mobility system and the specific requirements of the charging infrastructure for EVs, a set of technical requirements that are transversal to all USER-CHI technical products dealing with EVs' implementation have been identified. However, the USER-CHI technical product INSOC focuses on the implementation of lightweight electric vehicles (LEV), such as e-bikes and e-scooters, and therefore complies mainly with a different set of technical and legal requirements that are described in chapter 4.6. Figure 16 illustrates this relation of crosscutting technical requirements to the USER-CHI technical products, respectively.

Figure 16 Cross-cutting technical requirements for USER-CHI technical products.

Table: 22 outlines the cross-cutting general technical requirements for electromobility.

Requirements	Standard	Description
Vehicle-side charging point	ISO 17409:202010	Electrically propelled road vehicles — Conductive power transfer — Safety requirements
Charging infrastructure and charging point	IEC 61851-1:201711	Electric vehicle conductive charging system - Part 1: General requirements
	IEC 62196-1:2014 ¹²	Plugs, socket-outlets, vehicle connectors and vehicle inlets - Conductive charging of EVs - Part 1: General requirements
	IEC 60364-7- 722:2018 ¹³	Low-voltage electrical installations - Part 7- 722: Requirements for special installations or locations - Supplies for EVs

Table: 22 General technical requirements for electromobility.⁹

- ¹¹ Available at: <u>https://www.vde-verlag.de/iec-normen/224263/iec-61851-1-2017.html</u>
- ¹² Available at: <u>https://webstore.iec.ch/publication/6582</u>

⁹ NPE 2017

¹⁰ Available at: <u>https://www.iso.org/standard/72880.html</u>

¹³ Available at: <u>https://webstore.iec.ch/publication/63898</u>

Electro-magnetic compatibility (EMC)	IEC 1:2017 ¹⁴	61851-21-	Electric vehicle conductive charging system - Part 21-1 Electric vehicle on-board charger EMC requirements for conductive connection to AC/DC supply
	IEC 2:2018 ¹⁵	61851-21-	Electric vehicle conductive charging system - Part 21-2: Electric vehicle requirements for conductive connection to an AC/DC supply - EMC requirements for off board electric vehicle charging systems

The literature findings showed that technical standardisation in the field of electromobility is characterised by several features distinguishing it from previous standardisation processes¹⁶. The main challenge for USER-CHI technical products lies in coordinating and integrating diverse activities in different sectors to effectively meet local demands at each USER-CHI demo site within the EU.

Table 23 presents the structure of the standardisation landscape at the international, European, and national levels. Moreover, it shows the standardisation committees involved in the definition of technical standards in relevant domains for electromobility, such as automotive technology, electrical technology, and telecommunications, and the relationship between the various standards organisations, together with their regulatory bodies. International electrotechnical standardisation is carried out at IEC, while these activities in the automotive sector and the telecommunication sectors are carried out at ISO and ITU, respectively. Before electromobility can be seamlessly introduced, work amongst these organizations needs to be harmonized.

	General	Automotive technology	Electrical technology	Telecommunications
International	International	Electrically	International	International
Standardisation	Organization for	propelled	Electrotechnical	Telecommunication
	Standardization	vehicles	Commission	Union (ITU)
	(ISO)	ISO / TC 22 /	(IEC)	
		SC 37	SC 23H ¹⁷	

Table 23: Structure of the standardisation landscape

¹⁴ Available at: <u>https://webstore.iec.ch/publication/32045</u>

¹⁵ Available at: <u>https://webstore.iec.ch/publication/31282</u>

¹⁶ NPE 2014; NPE 2017; Werner 2020

¹⁷ Sub Committee (SC) for Plugs, socket-outlets, couplers for industrial and similar applications, and for EVs.

European Standardisation	European Committee for Standardization (CEN) / Technical Committees (TC)	European Committee for Standardization (CEN) / TC 301 - Road vehicles	European Committee for Electrotechnical Standardization (CENELEC)	European Telecommunications Standards Institute (ETSI)
National Standardisation	German Institute for Standardization ¹⁸ (DIN)	National Committees Electric Road Vehicles ¹⁹ NA 052-00-37 AA	German Commission for Electrical, Electronic & Information Technologies ²⁰ (DKE) DKE/UK 542.4 ²¹	German Commission for Electrical, Electronic & Information Technologies (DKE) DKE/K 724 & K 731 ²²
	Asociación Española de Normalización (UNE) Ente Italiano di Normazione (UNI)		Asociación Española de Normalización (UNE) Comitato Elettrotecnico Italiano (CEI)	
	Suomen Standardisoimisliitto r.y. (SFS)		Finnish Electrotechnical Standards Association (SESKO)	
	Hungarian Standards Institution (MSZT)		Hungarian Standards Institution (MSZT)	

In the European context, the importance given to seeking the integration of the different standardisation domains and its contribution to achieving climate protection targets has been highlighted. Through the EU mandate M/468, herein referred to as 'the mandate', the European

¹⁸ Deutsches Institut Für Normung

¹⁹ Nationale Gremien Elektrische Straßenfahrzeuge

²⁰ Deutsche Kommission Elektrotechnik Elektronik Informationstechnik

²¹ Industrial plugs and sockets

²² Telecommunication systems & Radio technology, respectively

Commission aims at ensuring uniform charging methods for EVs across the EU, avoiding isolated solutions by individual European member states. The mandate not only covers passenger cars, but also other vehicle categories, namely electric-scooters and electric-bicycles. It must therefore be considered when implementing all technical USER-CHI products. Nevertheless, for the issues of interoperability, the priority should be for the four-wheel EVs²³.

4.1.1.1 Supply of electric energy for EV's charging infrastructure

Within the USER-CHI consortium, the supply of electric energy for EVs charging infrastructure is mainly provided by the general power supply network (DSO). Moreover, the USER-CHI partners reported that in some USER-CHI countries, namely Italy and Germany, there are both public charging points (connected to the public distribution grid), and private charging points (connected to the public distribution grid), and private charging points (connected to the public distribution grid), and private charging points (connected to the public distribution grid), and private charging points (connected to the public distribution grid), and private charging points (connected to the public distribution grid), and private charging points, there are some charging infrastructures for "public use" (e.g., service stations, supermarkets, etc.). In Germany, the availability of charging infrastructure in the semi-public space was also reported.

According to the NPE the international requirements for the connection of charging stations to grid are specified in **IEC 60364-7-722** "Erection of low voltage installations"²⁴. This international standard, which is important for the safe connection of charging stations, was published in a first edition as early as 2014 and has been incorporated into the German standard **DIN VDE 0100-722**.

GRID CONNECTION

For charging stations with a capacity of more than 12 kVA, according to the German Low Voltage Connection Ordinance (Niederspannungsanschlussverordnung or NAV) and VDE AR N 4100 as well as the Technical Connection Conditions (Technische Anschlussbedingungen or TAB), an approval by the network operator is required and a data sheet of the charging device as well as a commissioning notification is necessary.

Moreover, a control interface (see VDE AR N 4100) must be provided from 12 kVA upwards. Charging devices with an output of less than 12 kVA must be registered with the main operator. In addition, **VDE AR N 4100** requires compliance with the symmetry requirement (asymmetrical load <4.6 kVA). Both for the direct connection of charging stations to the public distribution grid and in residential and commercial areas, the requirements of VDE application rule VDE-AR-N 4100 must be considered in the low-voltage grid. Depending on the connected load of the charging equipment to be installed and the planned use, measures must be taken regarding the power supply. The registration of changes in the grid connection is to be carried out by the qualified electrician or company carrying out the work²⁵.

²³ See mandate M/468

²⁴ NPE 2017

²⁵ Wagner 2020

CHARGING SPEEDS

The so-called charging power, which determines the time required to charge an EV, can vary by orders of magnitude across charge points, as shown in Table 24 below. A small household outlet may charge as slowly as 1.2 kW, while the most advanced fast charging stations can charge at up to 350 kW. The charging infrastructure could be broadly broken into three categories based on the charging speed: alternating current (AC) Level 1 (120V AC, 1.2 – 1.8 kW) and Level 2 (200 - 240V AC, 3,6 - 22 kW), and direct current (DC) fast charging (400V DC, 50 kW or more) sometimes referred to as Level 3²⁶.

In the EU, normal and fast charging are defined in the EU Directive 2014/94/EU Development of the infrastructure for alternative fuels²⁷ and result only from the charging performance applied during the charging process. For example, all charging processes with a charging capacity of up to 22kW are classified as normal charging, charging processes with higher capacities are called quick charging. In addition to the classic DC charging stations with lines from 50kW upwards, smaller DC wall boxes with outputs between 10 and 20kW are increasingly being considered across the EU²⁸.

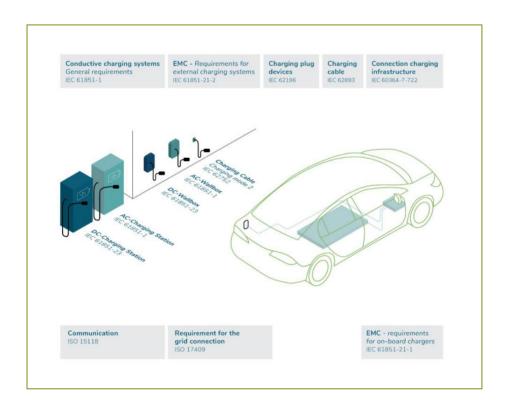
Table 24 illustrates how the charging infrastructure is implemented either as AC - one or three-Phases - or DC charging infrastructure in German, Spanish and Italian USER-CHI cities. The main voltage (V) and amperage (A) are also reported in each case and varies from 230V - 16A to 500V– 125A, as shown in the table below.

In the Italian case, it is important to note that DC grid connection for High Power Charging (HPC) is made to medium voltage (MV) grids, since in Italy the voltage varies from region to region.

Charging Technology	Charging Up to	harging capacity (kW) Charging current (A) p to Up to				Grid connection charging infrastructure				
USER-CHI Countries	DE	IT	ES	DE	IT	ES	DE	IT	ES	
AC – 1 Phase	3.7	3.7	3.7	16	16	16	230V, 16A	230V, 16A	230V, 16A	
AC – 3 Phases	22 (2x11)	43	44	32	63	63	400V, 3x32A	400V, 3x63A	400V, 63A	
DC	350	350	350	200	500	500	400V, 3x125A	400V, 3x125A	500V, 3x125A	

Table 24: EV charging - AC and DC current values for BEVs and PHEVs

²⁷ Available at: <u>https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0094</u>


²⁸ Wagner 2020

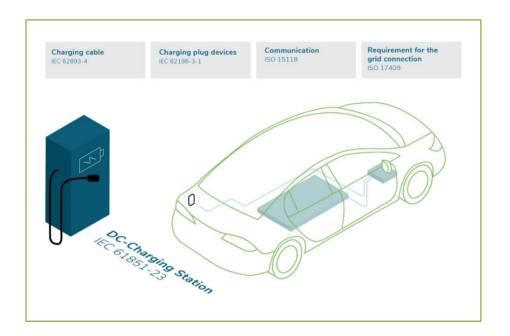
²⁶ Hall and Lutsey 2017

AC CHARGING

The energy transfer between the AC network and the EV can be wired or wireless – often referred to as conductive and inductive - (i.e., inductive charging, see USER-CHI product INDUCAR). In most cases, the EV is connected to the AC grid via a suitable power supply device, e.g., an AC charging station or AC wallbox²⁹. Figure 17 provides an overview of the available options for AC charging stations and their corresponding international technical requirements.

Figure 17: Conductive charging of EVs³⁰

Italian and **German** USER-CHI partners reported the international standard **IEC 61851-1** "Electric vehicle conductive charging system – Part 1: General requirements" and LV-EMC directives as the most relevant technical standards for AC charging technologies (see Figure 17). Moreover, the **CEI-021 and CEI-016** standards were reported as the technical standards for AC grid integration in **Italy**, whereas the **DIN VDE 0100-100 VDE 0100-100:2009-06**, **DIN VDE V 0124-100:2020-06**, **DIN EN 61851-1 VDE 0122-1:2012-01**, **DIN EN 50341-1 VDE 0210-1:2013-11**, **DIN VDE V 0124-100:2020-06**, **and VDE V 0124-100:2020-06** standards in **Germany**.


²⁹ Wagner 2020

³⁰ NPE 2017

• DC CHARGING

Charging with direct current requires the vehicle to be connected to the charging station via a charging cable, with the charger integrated in the charging station. DC charging is controlled via a communication interface between the vehicle and the charging station ³¹. The Figure 18 below provides an overview of the available options for DC charging stations and their corresponding international technical requirements.

Figure 18: Conductive charging with higher charging capacity³²

Table 25 highlights the international standardisation activities in the field of EV charging with higher charging capacities (DC charging) and in the field of communication between EVs and charging infrastructure.

Table 25 Wired charging with higher charging capacity³³

	Technical Requirements
DC charging station	IEC 61851-23
	Conductive charging systems for EVs – DC charging stations for EVs

³¹ Wagner 2020; Hall and Lutsey 2017; NPE 2012, 2014, 2017

³² NPE 2017 ³³ NPE 2017

DC charging cables	IEC 62893-4 ³⁴
	Charging cables for EVs – DC charging cable
DC charging connector	IEC 62196-3-1
	Connectors for charging EVs – Requirements and main dimensions for DC charging connectors
Vehicle requirements	ISO 17409
	Electrically powered road vehicles – Connection to an external power supply – Safety requirements
Communication	ISO 15118-2
	Communication interface between vehicle and charging station – Network and application protocol requirements

The standard **IEC 61851-23** introduces the terms standard operating conditions' and 'special operating conditions' for describing the technical requirements for charging with cooled charging cables and cooled plugs and sockets in a normative way. In addition, the behaviour of the charging station when critical temperatures are reached is also defined.

The standard **IEC 62893-4** defines the technical requirements for charging cables for DC charging including those for use for higher charging power. The application of higher currents to the connector leads to increased heat generation, so that reliable temperature management, including the associated measurement methodology and corresponding tests, is also introduced into the standard **IEC 62196-3-1** for charging with higher charging capacities. Requirements for the description of the contact coating, contact surface, and the corresponding tests are also included in this standard.

The following technical standards go beyond the requirements on the charging infrastructure side. According to the **ISO 17409** standard, the conditions for temperature monitoring on the vehicle side must be introduced and technical adjustments must be made accordingly. Moreover, the **ISO 15118-2** standard deals with the communication interface between vehicle and charging station. The communication must ensure that the charging process with the higher charging power is only started if the vehicle and charging station have the necessary temperature monitor and can safely monitor the process.

Italian USER-CHI partners reported the **IEC 61851-1** standard, LV-EMC directives, and **CEI EN 61851-23** Electric vehicle conductive charging system - Part 23: DC electric vehicle charging

³⁴ According to the VDE, the standard **IEC 62893-4-1:2020** (Charging cables for EVs of rated voltages up to and including 0,6/1 kV - Part 4-1: Cables for DC charging according to mode 4 of IEC 61851-1 - DC charging without use of a thermal management system) applies to cables for DC charging according to mode 4 of IEC 61851-1. These cables are not intended to be used with a thermal management system such as that specified in IEC 61851-23. Charging cables specified in IEC 62893 (all parts) are intended to be used for electrical appliances of class II equipment.

station, as relevant standards for DC charging technologies. German USER-CHI partners reported the **DIN EN 61851-1 VDE 0122-1:2012-01** standards to be implemented in Germany.

Furthermore, the **CEI EN 61851-23** Electric vehicle conductive charging system - Part 23: DC electric vehicle charging station, and the CEI-021, CEI-016 standards were reported as the Italian standards for DC grid integration, although the connection to the DSO in AC was noted, since there are no DC grids in Italy. The German **DIN VDE 0100-100:2009-06** and **DIN VDE V 0124-100:2020-06** were reported as current standards for DC grid integration in Germany.

• VEHICLE TO GRID (V2G) TECHNOLOGIES

The Italian and German USER-CHI partners are currently testing and demonstrating V2G technologies in their countries. **Italy** refers to the **ISO 15118** family "Road vehicles - Vehicles to grid communication interface" as the international standard for V2G, the Italian partners reported. Moreover, the Italian Ministerial Decree "Criteria and modalities to favour the diffusion of the integration technology between EVs and the electricity grid, called vehicle to grid", published on 30 January 2020, supports V2G implementation in Italy. **Germany** refers to **IEC 60870-5-104** as the international standard considered for the connection to V2G chargers OCCP 1.6 with extensions. The Italian and German USER-CHI partners reported that V2G technologies are being tested with CHAdeMO connectors.

• DEMAND SIDE MANAGEMENT (DSM)

DSM strategies aim at improving the flexibility of the energy system on the consumer side by encouraging final users to be more energy efficient. The Italian and German USER-CHI partners reported that they are currently testing and demonstrating DSM strategies in their countries.

The Italian Transmission Operator (Terna) began around two years ago some pilot projects with the aim to test the flexibility connected to distributed resources also including the possibility to apply Demand Response (DR) strategies. In Germany, the chargers are "aggregated" on a virtual power plant (VPP) and respond to service requests, namely: load reduction, power reduction in the LV based on local injection, local renewable energy source consumption, reactive power Injection, and harmonics filtering. No specific technical requirements for implementing DSM strategies were reported.

4.1.1.2 Technical Requirements of the grid operator and metering device operator

GRID CONNECTION

Technical requirements for the grid connection were reported by Italian and German USER-CHI partners. The **CEI-021 and CEI-016** standards are Italian national standards in the field. Moreover, the Italian Grid Code, approved by the Regulatory Authority for Energy, Networks and Environment (ARERA) with resolutions no. 79/05 and 49/06, and by the Ministry of Productive

Activities, is subject to continuous updating according to the procedures defined within the document³⁵.

German USER-CHI partners reported the Technical Connection Conditions (Technische Anschlussbedingungen or TAB) and the Technical Connection Rules for Low Voltage (Technische Anschlussregeln Niederspannung or TAR) as the main technical standards for the grid connection in Germany.

• ELECTRICITY METER LOCATION

Technical requirements for electricity meter location were reported by the USER-CHI Italian partners. The **CEI-021 and CEI-016** standards were reported as relevant national standards in **Italy** for the grid connection. Moreover, the Italian Regulatory Authority for Energy, Networks and Environment (ARERA) defined technical requirements to connect second generation of smart meters (2G) on March 2016³⁶.

• GRID OPERATOR REQUIREMENTS

Requirements on the part of the network operator regarding symmetrical load conditions and impermissible network perturbations are reported by Varro (2013) within the German context.

From the grid operator's point of view, charging stations for EVs are electrical appliances within the meaning of Section 10 of the **TAB NS Nord 2012**. There shall be no inadmissible system perturbations and voltage shifts due to asymmetrical loads. The standards for grid connection, meter location and circuit distributor used in the **TAB NS Nord 2012** shall be considered. This applies to the connection of several single-phase charging points with 16 A or higher.

4.1.1.3 Technical connection rules (TCR)

According to Wagner (2020) and the German Association for Electrical, Electronic & Information Technologies (VDE³⁷), the TCR for low voltage (Technische Anschlussregeln Niederspannung or TAR-NS) are summarized in the standard **VDE-AR-N-4100** which specifically regulates the technical requirements for electromobility. The TAR-NS sets the TCR that must be observed during the planning, construction, connection, and operation of electrical installations to the low voltage (LV) grid of the grid operator. The TAR-NS applies to reference installations and - in connection with the application rule Generation Installations on the Low Voltage Grid (**VDE-AR-N 4105**).

³⁵ The Italian Grid Code and annexes are available at: https://www.terna.it/en/electric-system/grid-codes/italian-grid-code.

³⁶ See ARERA Luca lo Schiavo "Innovation in the electricity sector in the framework of cooperation between energy and telecom regulators in Italy", AEEGSI 2017.

³⁷ Verband der Elektrotechnik Elektronik und Informationstechnik e.V., German Association for Electrical, Electronic & Information Technologies, or VDE.

With the entry into force of the VDE Application Regulations, the following requirements have been replaced and repealed:

- Requirements for low-voltage meter stations (VDE-AR-N 4101), 2015
- Outdoor connection cabinets (VDE-AR-N 4102), 2012
- VDN guideline emergency for power generators, 2004
- Technical requirements for access to low voltage networks of the Distribution Code 2007
- DIN VDE 0100-732 (VDE 0100-732) House connections in public cable networks
- VDN guideline surge protection devices type 1
- VDEW-Material M-38/97 Requirements for seal closures, edition 1997
- Technical connection conditions for connection to the low-voltage grid, TAB 2007 (Federal sample wording)

Italian USER-CHI partners reported the following TCR for LV grid:

- CEI-021:2014-09
- CEI-016

Moreover, the Italian USER-CHI partners reported the technical connection conditions **CEI-50160** and **CEI-021**, **CEI-016** should be considered from DSO side and CPO side, respectively.

4.1.1.4 Charging plug components for electromobility

As EV charging technology continues to advance in the EU context and world-wide, several standards and guidelines have become widely accepted across the industry. To provide a technical background for the implementation of technical USER-CHI products, this subsection gives an overview of charging plug components for wired charging for EVs.

As mentioned in section 4.1.1, the so-called charging power determines the time required to charge an EV and could vary by orders of magnitude across charge points. The charging infrastructure is implemented either as alternating current (AC) one and three-Phases or direct current (DC) charging infrastructure in the USER-CHI cities (see Table 24).

Moreover, the IEC 62196-1:2014 international standard is applicable to plugs, socket-outlets, vehicle connectors, vehicle inlets and cable assemblies for EVs, intended for use in conductive charging systems which incorporate control means, with a rated operating voltage not exceeding: 1) 690V AC 50 Hz to 60 Hz, at a rated current not exceeding 250A; and 2) 1 500V DC at a rated current not exceeding 400A.

• CHARGING PLUG STANDARDS

The type of plug and socket used for EV's charging may vary depending on region and speed of charging. The USER-CHI partners reported using the following Plug and socket configurations

for AC and DC charging, namely: CCS, CHAdeMO, Mennekes, and Schuko, as illustrated in Table 26 below. Moreover, the charging speeds and the corresponding international standards for type are also detailed.

Italian USER-CHI partners mentioned using Type 3A (LEV) for AC charging. Moreover, it was also pointed out that CHAdeMO chargers are not required but Enel X installs it in most of its DC charging stations, so CHAdeMO is still present in the DC charging stations and Tesla Superchargers for Tesla EVs.

Regarding the Schuko plugs and sockets, no common EU standards were found. The following types are used in the USER-CHI countries: Type F, CEE 7/4 plug, CEE 7/7 plug for Germany Spain, Hungary, and Finland; and CEI 23-50 for Italy.³⁸

			CCS ombo)		1	CHA	deM(C				neke oe 2)				Sc	huko		
International	IEC	621	.96-3	}		ISO/	IEC 6	1851	L-23		IEC (5219	6-2			No common EU				
Standards	DIN	I SPI	EC 70)121		ISO/	IEC 6	1851	L-24							stan	dard			
						IEC 6	5219	6												
AC 1-3 Phases			Х										Х					Х		
DC			Х				•	Х				Х								
							600)				° °	•			($\overline{\mathbf{O}}$		
Communication	ISO 15118																			
Standard																				
USER-CHI	ES	DE	HU	П	FI	ES	DE	HU	IT	FI	ES	DE	HU	IT	FI	ES	DE	HU	IT	FI
Countries				Х					Х		Х	Х		Х		Х				

Table 26 Plug and socket	configurations for AC	and DC charging. Source:	Wagner 2020 ³⁹
J	5	5 5 5	J

For DC fast charging, connector types vary by automaker and region. Furthermore, the following standards for vehicle connectors and vehicle plugs are in force in Germany:

- DIN EN 62196-1 (VDE 0623-5). Plugs, socket-outlets, vehicle plugs and vehicle connectors Charging of EVs Part 1: Conducted charging of EVs up to 250 A (AC) and 400 A (DC) (IEC 62196-1); German version EN 62196-1
- DIN IEC 62196-2 (VDE 0623-5-2). Plugs, socket-outlets, vehicle mounted plugs and socket-outlets Conductive charging of EVs Part 2: Requirements and main

³⁸ available at: https://ec.europa.eu/info/sites/info/files/xii24a_plugs_and_sockets.pdf

³⁹ available at: www.electromovilidad.net

dimensions for compatibility and interchangeability of pin and socket-outlets for alternating current (IEV 62196-2:2011); German version EN 62196-2:2012

The Draft standard DIN EN 62196-3; VDE 0623-5-3 covers plugs, socket-outlets and vehicle plug and socket devices - Conductive Charging of EVs - Part 3: Requirements and main dimensions for pins and sockets for interchangeability of vehicle plug-and-socket components for dedicated charging with direct current and as a combined version for charging with alternating current / direct current Understandably, a regulatory requirement to comply with this draft does not yet exist. However, compliance is recommended.⁴⁰

4.1.1.5 Product standards and electrical safety

The focus in electromobility product standards (hardware) is on electrical safety. The EV safety requirements for connection to an external power supply are defined in the international standard ISO 17409. To adapt the standard to the technical innovations after its publication in 2015, further development was already planned, and should take place continuously until 2020. This standard is also being continuously adapted to technological innovations⁴¹.

• EQUIPMENT AND CONDUCTIVE CHARGING SYSTEMS

The ISO 17409 standard was reported to be implemented by Italian USER-CHI partners as the technical standard for equipment and conductive charging systems for EVs. Beyond this standard, in the Italian normative framework aiming to protect public against established adverse health effects that may result because of exposure to electro-magnetic fields (0 Hz - 300 GHz), follows the Council Recommendation 1999/519/EC and IEC TS 62764-1, according to USER-CHI Italian partners.

German USER-CHI partners reported the standard DIN EN 62752 (VDE 0666-10):2017-04⁴² for charging line integrated control and protection device for charging mode 2 of electric road vehicles (IC-CPD) (IEC 62752:2016) (German version EN 62752:2016) about existing standards for equipment and conductive charging systems for EVs.

Furthermore, according to Wagner (2020) the system standards DIN EN 61851-1:2013-04 and VDE 0122-1:2013-04 for cable-bound charging, consider the development of the separate product international standard IEC 62752 for the charging cable set for charging mode 2 (IC-CPD) as well as the product standard IEC/TS 61439-7 (VDE V 0660-600-7), which defines the housing requirements (DIN EN 60529) for charging stations depending on the installation location and intended use in Germany.

• LOCATION OF FIRE EXTINGUISHERS AND FIRE ALARM SYSTEMS

⁴⁰ Varro 2013

⁴¹ NPE 2017

⁴² available at: https://www.dke.de/de/normen-standards/dokument?id=7085182&type=dke%7Cdokument

Technical standards for the location of fire extinguishers and fire alarm systems were only reported by Italian USER-CHI partners. In Italy, the Circular no. 2/2018 of the Ministry of the Interior, Department of Fire, Public aid and Civil Defence of the Central Direction for Prevention and Technical Safety published the "Guidelines for the installation of infrastructure for charging EVs".

• SAFETY INSPECTIONS OF CHARGING STATIONS

Technical standards for safety inspections of charging stations were reported by Italian and German USER-CHI partners. In Italy, the Circular no. 2/2018 of the Ministry of the Interior, Department of Fire, Public Aid and Civil Defence, Central Direction for Prevention and Technical Safety issued the "Guidelines for the installation of infrastructure for charging EVs". In Germany, on the other hand, the DIN VDE 0100-600 VDE 0100-600:2017-06⁴³ standard for Erection of low-voltage installations was reported.

• DATA SECURITY REGARDING CHARGING INFRASTRUCTURE

German USER-CHI partners reported the IEEE 802.11-2016⁴⁴ - IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements, as the reference for data security regarding charging infrastructure.

• FUNCTIONAL SAFETY

Technical standards for functional safety were reported by Italian and German USER-CHI partners. In Italy, the IEC 61851-1:2017 standard for Electric vehicle conductive charging system - Part 1: General requirements was reported as the international standard in place. Moreover, The Circular no. 2/2018 of the Ministry of the Interior, Department of Fire, Public Aid and Civil Defence, Central Direction for Prevention and Technical Safety issued the "Guidelines for the installation of infrastructure for charging EVs" was reported as the Italian national standard in this field.

In Germany, two certifications, the VDE calibration⁴⁵ and CE certification, and two standards should be considered regarding functional safety, namely ISO 26262 (that replaces IEC 61508 for the automotive industry as the standard for the functional safety of road vehicles⁴⁶) and IEC 62061:2005⁴⁷ (Safety of machinery - Functional safety of safety-related electrical, electronic, and programmable electronic control systems).

⁴³ available at: <u>https://www.vde-verlag.de/normen/0100382/din-vde-0100-600-vde-0100-600-2017-06.html</u>

⁴⁴ available at: <u>https://standards.ieee.org/standard/802_11-2016.html</u>

⁴⁵ Also known in Germany as "VDE-Eichrechts certification"

⁴⁶ available at: <u>https://www.elektronikpraxis.vogel.de/iso-26262-ueberblick-zur-norm-zur-funktionalen-sicherheit-von-</u> <u>strassenfahrzeugen-a-771930/</u>

⁴⁷ available at: <u>https://webstore.iec.ch/publication/6426</u>

4.1.1.6 Hardware requirements for installed charging points

Due to the integration of the charging stations into an existing authentication system or the connection to an IT backend system, modifications of standard charging stations in which other IT systems or GSM components are usually installed as hardware may occur. In this case, the electrical safety of the entire system must be verified (if necessary, by means of inspection) and, if necessary, the replacement of components must be notified to the issuer of the certificate or the test documents for CE conformity. The following sections present sets of technical requirements in specific areas that are considered amongst the Italian and German USER-CHI partners.

ELECTRONIC EQUIPMENT IN CHARGING STATIONS

The Italian USER-CHI partners reported **IEC 61851-1:2017** Electric vehicle conductive charging system - Part 1: General requirements⁴⁸; **EN 61851-21-1:2017** Electric vehicle conductive charging system - Part 21-1: Electric vehicle on-board charger EMC requirements for conductive connection to an AC/DC supply⁴⁹; and CEI EN 61851-23 Electric vehicle conductive charging system Part 23: D.C. electric vehicle charging station⁵⁰; as the technical standards for electronic equipment in place in the Italian context. In Germany, on the other hand, the USER-CHI partners reported that electronic equipment, such as components for charging stations should be CE conform and reported the **DIN VDE 0100-100 VDE 0100-100:2009-06**⁵¹ standard for Lowvoltage electrical installations as the technical standard in place.

SWITCHGEAR

In Italy, the USER-CHI partners reported that when implementing switchgear equipment, such as low voltage switchgear, load-break switches, dis-connectors, switch-dis-connectors, and switch-fuse units, the following standards must be observed: **IEC 61851-1, CEI EN 61851-21**, and **CEI EN 61851-23**, USER-CHI partners reported. In Germany, on the other hand, it was reported that switchgear for charging stations should be CE conform and reported the **DIN VDE 0100-100 VDE 0100-100:2009-06**⁵² standard for low-voltage electrical installations as the technical standard in place.

COMMUNICATION UNIT

The Italian USER-CHI partners reported the **IEC 61851-24:2014** Electric vehicle conductive charging system - Part 24: Digital communication between a DC electric vehicle charging station

⁴⁸ available at: <u>https://www.vde-verlag.de/iec-normen/224263/iec-61851-1-2017.html</u>

⁴⁹ available at: <u>https://standards.iteh.ai/catalog/standards/clc/8d80f635-8691-4602-b632-a7c3d73f79b0/en-61851-</u> 21-1-2017

⁵⁰ available at: <u>https://standards.globalspec.com/std/13240828/EN 61851-23/EC</u>

⁵¹ available at: <u>https://www.vde-verlag.de/standards/0100131/din-vde-0100-100-vde-0100-100-2009-06.html</u>

⁵² available at: <u>https://www.vde-verlag.de/standards/0100131/din-vde-0100-100-vde-0100-100-2009-06.html</u>

and an electric vehicle for control of DC charging⁵³, as the standards for communication units, such as modem or radio interfaces.

In Germany, the USER-CHI partners reported the **SAE J2954-Standards**, Norm **SAE J2847/6** and the **E DIN EN IEC 61980-1 VDE 0122-10-1:2020-11** Electric vehicle wireless power transfer (WPT) systems⁵⁴ should be considered as the standards for communication units, such as 3G modems.

• ELECTRO-MAGNETIC TOLERANCE (EMT)

In Italy, the USER-CHI partners reported that when considering the EMT in EV charging stations, the following standards should be observed: **IEC 61851-21-2; CEI EN 61980**; and **IEC TS 62764-1:2019**⁵⁵. Measurement procedures of magnetic field levels generated by electronic and electrical equipment in the automotive environment with respect to human exposure - Part 1: Low frequency magnetic fields. In Germany, the USER-CHI partners reported the **SAE J2954-Standards, Norm SAE J2847/6** and the **E DIN EN IEC 61980-1 VDE 0122-10-1:2020-11** Electric vehicle wireless power transfer (WPT) systems⁵⁶; should be considered.

• INSTALLATION, PROTECTION REQUIREMENTS, AND PROTECTION MEASURES

The Italian USER-CHI partners reported the **IEC 61851-1; CEI-EN 61851-1; CEI-EN 61851-23;** and **ISO 17409:2015** Electrically propelled road vehicles — Connection to an external electric power supply — Safety requirements⁵⁷, as the international standards for installation, protection requirements, and protection measures.

The German USER-CHI partners reported the **DIN VDE 0100-100 VDE 0100-100:2009-06**⁵⁸ standard for Low-voltage electrical installations as the technical standard in place for installation, protection requirements, and protection measures.

IT SECURITY

In Italy, the USER-CHI partners reported that when considering how to ensure that the communication between the charging infrastructure and the back end it is secured, the international standard **IEC 63119-1:2019** Information exchange for electric vehicle charging roaming service - Part 1: General⁵⁹ must be considered. German USER-CHI partners, on the other hand, reported that VPN channel, SSL, closed cabinets, locked USBs, and the following standards should be observed: **ISO/IEC 27001** Information Security Management Systems standard⁶⁰; **SAE**

⁵⁵ available at: <u>https://www.vde-verlag.de/iec-normen/247993/iec-ts-62764-1-2019.html</u>

- ⁵⁹ Italian standard CEI-EN 63119-1 (CEI 69-18)
- ⁶⁰ available at: <u>https://www.icertworks.com/iso-27001-</u>

⁵³ available at: <u>https://www.vde-verlag.de/iec-normen/220664/iec-61851-24-2014.html</u>

⁵⁴ available at: <u>https://www.vde-verlag.de/standards/1100638/e-din-en-iec-61980-1-vde-0122-10-1-2020-11.html</u>

 ⁵⁶ available at: <u>https://www.vde-verlag.de/standards/1100638/e-din-en-iec-61980-1-vde-0122-10-1-2020-11.html</u>
 ⁵⁷ available at: <u>https://www.iso.org/standard/68491.html</u>

⁵⁸ available at: <u>https://www.vde-verlag.de/standards/0100131/din-vde-0100-100-vde-0100-100-2009-06.html</u>

 $[\]underline{certification.php?gclid=EAlalQobChMliYXMyqnV7QIVAeztCh2sNA03EAAYASAAEgIWqPD_BwE}$

J2954-Standards, Norm SAE J2847/6 and the E DIN EN IEC 61980-1 VDE 0122-10-1:2020-11 Electric vehicle wireless power transfer (WPT) systems⁶¹.

4.1.1.7 Testing of hardware/charging infrastructure

The testing of hardware under environmental influences (such as rain, storm, heat and cold; damage caused by negligence or force) is particularly relevant for its operational safety and reliability. One of the essential ideas in this context is to ensure safe operation for the user. The influences of the environment are tested based on the standards in Table 27.

Test	International	Germany
Environmental influences -	IEC 60068-2-14	DIN EN 60068-2-14
Part 2-14: Test methods - Test N: Temperature Change	IEC 61851-1	(VDE 0468-2-14)
Ambient conditions - Part 2- 30: Test methods - Test Db: Humid heat, cyclic (12 + 12	IEC 60068-2-30	DIN EN 60068-2-30
	IEC 61851-1	
hours)		
Environmental testing - Part 2-75: Tests - Test Eh: Hammer tests	IEC 60068-2-75	DIN EN 60068-2-75
	IEC 61851-1	
Environmental testing - Part	IEC 60068-2-78	DIN EN 60068-2-78
2-78: Tests - Test Cab: Humid heat, constant	IEC 61851-1	
Flood Resilience	IEC 60529:1989/A2:2013/COR1:2019	EN 60529:1991/A2:2013/AC:2019- 02

Table 27: Standards for testing the influences of the environment. Source: Varro 2013 and USER-CHI
German partners

USER-CHI partners reported that **IEC 61851-1**, an international standard for EV's conductive charging systems, which presents the requirements for temperature change, humid heat (cyclic and constant), hammer-test, and precipitation, as shown in the Table 27 above. Requirements for flood storm were not reported in the technical questionnaires.

⁶¹ available at: <u>https://www.vde-verlag.de/standards/1100638/e-din-en-iec-61980-1-vde-0122-10-1-2020-11.html</u>

4.1.1.8 Safety and standard-compliant design of the mounting system

As mentioned in the section 4.1.1.2, the grid operator is responsible for providing, commissioning, and operating the grid connection. The metering point operator is responsible for the metering point. The sub-distribution and remaining installation shall be carried out in connection with the erection of the charging point considering the following standards.

In Italy, the following alternative mounting system exist: Boxes: wall-mounted; Pole: reinforced plint; and Multi-standard: reinforced plint.

In Germany, the standard E DIN EN IEC 62196-1 VDE 0623-5-1:2020-12 for Plugs, sockets, vehicle connectors and vehicle plugs - Conductive charging of EVs⁶² should be considered as reference for safety and standard-compliant design of the mounting system. Moreover, the charging stations implemented in the City of Berlin must follow design guidelines by the Senate of Berlin regarding colour, stickers, height; they should also comply with historic preservation guidelines.

4.1.1.9 Technical records and documentation

The **ISO 15489**⁶³ standard establishes the core concepts and principles for the creation, capture, and management of records. It is the core of several international standards and technical reports that provide further guidance and instruction on the concepts, techniques, and practices for creating, capturing, and managing records. The standardisation ensures that appropriate attention and protection is given to all records, and that the evidence and information they contain can be retrieved more efficiently and effectively, using standard practices and procedures. ISO 15489 consists of the following parts, under the general title Information and documentation – Records management, namely Part 1: Concepts and principles; and Part 2: Guidelines (Technical Report). The Technical Report (ISO/TR 15489-2) provides further explanation and implementation options for achieving the outcomes of ISO 15489.

In the German context, Varro (2013) reported that technical documentation must meet the requirements of the standards described in the Table 28 below.

Technical Standards	Realm/contents
ISO 15489	Information and documentation — Records management
ISO/IEC GUIDE 37	Instructions for use of products of consumer interest
DIN EN 82079	Preparation of instructions for use; namely: Structure, content, and presentation
VDI 4500-1	Technical documentation - User information

Table 28: Standards for technical records and documentation

⁶² Available at: https://www.vde-verlag.de/normen/1600349/e-din-en-iec-62196-1-vde-0623-5-1-2020-12.html

⁶³ Available at: https://www.iso.org/obp/ui/#iso:std:iso:15489:-1:ed-2:v1:en

Complying with CE marking requirements was noted by USER-CHI partners as a further requirement that cities should meet regarding technical records and documentation within the EU. The technical documentation provides information on the design, manufacture, and operation of a product and must contain all the details necessary to demonstrate the product conforms to the applicable requirements. Moreover, this documentation is required to prove the USER-CHI technical product meet the essential requirements and therefore justify and support an EU declaration of conformity. This documentation is needed to affix the CE marking to the product⁶⁴. Graphic symbols are used for, among other purposes, the user interface, human machine interaction and safety labelling.

Graphical symbols are standardised by various committees. For the vehicle side and at the international level, **ISO/TC 22/SC 13 with WG 5** is particularly noteworthy. The IEC also maintains various committees for the standardisation of electrical engineering symbols. In Germany, this work is mirrored by the DKE and the DIN Automotive Standards Committee. At the European level, the European Commission issued mandate **M/533 to CEN and CENELEC** for the labelling of charging stations. **CEN/TC 301** will work in close cooperation with the international level in the coming years.⁶⁵

Moreover, German USER-CHI partners reported the **ISO 9001**, that sets out the criteria for a quality management system, as the reference standard to be considered for technical documentation.

Finally, Italian, and German USER-CHI partners reported that for charging stations funded by EU projects documentation must be available at least 5 years after the end of the project. On the other hand, when complying with CE marking the technical documentation should be kept for 10 years from the date the product is placed on the market (unless explicitly specified otherwise). It is therefore suggested to keep all records and documentation for at least 10 years.

4.1.2 Cross-cutting legal requirements

This section provides an overview of the general cross-cutting legal requirements that must be met on a national level of the USER-CHI countries and five other countries for the implementation of the USER-CHI products. The results are presented as tabular formats. The overview covers the following information received from the countries/cities tagged (see Table 29). The residual information is pending.

Table 29: Legal requirements – feedback results from USER-CHI and external partners

Finland	Germany	Hungary (BUD)	Italy (FLO,	Spain (AMB,	
(TUR)	(IKEM/BER)		RSM)	MUR)	

⁶⁴ available at:<u>https://europa.eu/youreurope/business/product-requirements/compliance/technical-documentation-</u> conformity/index_en.htm

USER- CHI Countrie s	\checkmark	\checkmark			\checkmark
	Austria (City of Graz)	France (City of Paris)	The Netherlands (City of Rotterdam)	Latvia (City of Riga)	Switzerland (Canton of Basel)
Other Countrie s	\checkmark				

The information presented is based on the information provided through the questionnaires as well as desk research where possible/applicable.

National Implementation of the Alternative fuels Infrastructure (AFID) (2014/94/EU) (SMAC, INDUCAR, INSOC, CLICK) 4.1.2.1

• NATIONAL IMPLEMENTATION OF THE AFID (2014/94/EU)

Table 30 Overview of national measures implementing the AFID (2014/94/EU)

Barcelona	Berlin	Graz	Murcia	Turku
The Royal Decree 639/2016,	The Charging Pole Decree (LSV) which defines technical	Information not yet	Same as Barcelona	Information not yet
establishing a "framework of	standards for public charging points, e.g., "interoperability" or	reported		reported
measures for the	"selective charging" accordingly implementing the technical			
implementation of an	requirements of Annex II to AFID (see question No. 12 for			
infrastructure for alternative	more details). In accordance with the Electricity Market Act			
fuels" is the national law for	(StrommarktG) ⁶⁸ , an amending law to several energy and			
the implementation of the	energy industry related legal provisions, charging points are			
AFID ⁶⁶ . Moreover, the	qualified as "final users" within the German Energy industry			
Spanish government issued a	Law (EnWG) ⁶⁹ This categorisation is a privilege for CPOs,			
technical report on November	because it exempts them from certain duties, which would			
2019 to address the	otherwise arise for commercial electricity providers in			
fulfilment of the Art.10 of	accordance with the EnWG. Moreover, the EnWG was			
AFID (2014/94/EU) 67.	adapted to implement definitions and specifications for			

⁶⁶ Real Decreto 639/2016, de 9 de diciembre, por el que se establece un marco de medidas para la implantación de una infraestructura para los combustibles alternativos, (available at: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2016-11738, last accessed: 04.01.2021).

⁶⁷ Informe sobre la aplicación del marco de acción nacional de energías alternativas en el transporte, (available at: https://industria.gob.es/es-ES/Servicios/Documents/aplicacionmarco-energias-alternativas.pdf, last accessed: 04.01.2021

⁶⁸ Available at:

https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&start=//*%5B@attr_id=%2527bgbl116s1786.pdf%2527%5D#__bgbl__%2F%2F%5B%40attr_id%3 D%27bgbl116s1786.pdf%27%5D_1609770779438, last accessed 04.01.2021

⁶⁹ available at: https://www.gesetze-im-internet.de/enwg_2005/, last accessed 04.01.2021

Barcelona	Berlin	Graz	Murcia	Turku
	charging points. ⁷⁰ In addition, the Metering Point Operation (MsbG) Act ⁷¹ was implemented for the specifications for consumption recording systems according to AFID Art.4(7). ⁷² Furthermore, the Electromobility law (EmoG) ⁷³ allows privileges for EVs within the framework of road traffic law in order to promote electromobility e.g. the possibility of free parking spaces or the use of the bus lane.			

 ⁷⁰ BMVI, First report on the implementation of the national strategic framework in Germany, 2019, p.20.
 ⁷¹ available at: https://www.gesetze-im-internet.de/messbg/, last accessed 04.01.2021.

⁷² BMVI, First report on the implementation of the national strategic framework in Germany, 2019, p.20.

⁷³ available at: https://www.gesetze-im-internet.de/emog/, last accessed: 04.01.2021.

• NATIONAL IMPLEMENTATION OF THE GOAL OF NON-DISCRIMINATORY ACCESS TO PUBLIC CHARGING INFRASTRUCTURE (FOR USERS AS WELL AS FOR ELECTRICITY SUPPLIERS; SEE ART. 2 No. 7, ART. 4 No. 8-11 AFI-DIRECTIVE)⁷⁴

Table 31: National implementation of the goal of non-discriminatory access to public charging infrastructure (Art. 2 No. 7, Art. 4 No. 8-11 AFID)

Barcelona	Berlin	Graz	Murcia	Turku
The Spanish legal framework does	The §3 (1) of the Charging Pole	The Austrian legal framework	Same as Barcelona	Information not yet reported
not address this goal explicitly.	Decree (LSV) requires that each	links these requirements with		
However, even though the national	for AC standard charging point	national subsidies for		
regulation (Royal Decree-Law	shall be equipped at least with	infrastructure. However, it is		
15/2018) does not include this goal	sockets or with sockets and	common to offer public		
in the same clear manner than it is	vehicle couplings of type 2 in	charging infrastructure with a		
included in the AFID, the non-	each case in accordance with	non-discriminatory access.		
discriminatory access remains a	the standard DIN EN 62196-2,			
characteristic in the sector (for	December 2014 edition.			
users and suppliers).	Moreover, § 3 (2) LSV requires			
	AC fast charging points to be			
	equipped at least with type 2			
	couplings in accordance with the			
	DIN EN 62196-2 standard,			
	December 2014 edition. §3 (3)			
	LSV requires normal and fast			
	DC charging points to be			
	equipped at least with couplers			
	of the type Combo 2 in			
	accordance with the standard			

⁷⁴ USER-CHI Legal Questionnaire Q. No.12

77 D1.3: Technical and legal requirements for USER-CHI solutions

Barcelona	Berlin	Graz	Murcia	Turku
	DIN EN 62196-3, July 2012			
	edition.			

• RULES IMPLEMENTED IN ORDER TO GUARANTEE THAT EV-DRIVERS ARE ABLE TO CHARGE THEIR VEHICLE WITHOUT PREVIOUSLY HAVING TO CONCLUDE A CONTRACT WITH THE CHARGING POINT OPERATOR (CPO) IN ACCORDANCE TO ART. 4 No. 9 AFI-DIRECTIVE⁷⁵

Table 32: Rules implemented to guarantee "ad-hoc charging" (Art. 4 No. 9 AFID)

Barcelona	Berlin	Graz	Murcia	Turku
Barcelona Regarding the Metropolitan Area of Barcelona, the legal basis for the is the transposition law of the AFID into the Spanish legal is the Royal Decree 639/2016, establishing a 'framework of measures for the implementation of an infrastructure for alternative fuels.	Berlin § 4 LSV states that the operator of a charging point must allow users of EVs to recharge without entering a long-term contract. However, technical improvements are still needed in order to ensure the availability of 'ad-hoc charging.' The LSV is currently under revision and expected to be updated in	Graz In the city of Graz, the major public infrastructure has a non- discriminatory access implemented, even though no certain rules exist.	Murcia There is no regulation applicable in Murcia in order to guarantee this. In the case of Murcia in practice users must register as a new user or client at the charging service of the CPO (by the APP or website).	Turku Information not yet reported
	2021. ⁷⁶ See also question 28 regarding information about the 'Berlin model'.			

⁷⁵ USER-CHI Legal Questionnaire Q. No.12

⁷⁶ Zweite Verordnung zur Änderung der Ladesäulenverordnung, Referentenentwurf des Bundesministeriums für Wirtschaft und Energie, (available at: https://www.bmwi.de/Redaktion/DE/Artikel/Service/Gesetzesvorhaben/zweite-verordnung-zur-aenderung-der-ladesaeulenverordnung.html, last accessed: 04.01.2021).

NATIONAL LAWS TO ENSURE INTEROPERABILITY OF CHARGING INFRASTRUCTURE RUN BY DIFFERENT CPOs⁷⁷

Table 33: National laws to ensure interoperability of charging infrastructure run by different CPOs

Barcelona	Berlin	Graz	Murcia	Turku
The Spanish legal framework does	Regarding the city of Berlin and	The Austrian national	The Spanish legal framework	No national laws ensure this
not imply such laws. Currently, both	the German aspects of	government has offered	does not imply such laws.	aspect of interoperability.
the regulations regarding the	interoperability standardized	subsidies to implement this	Currently, both the regulations	
requirements for the provision of	communication interfaces are	aspect of interoperability in the	regarding the requirements for	
the energy recharging service, as	not required by the LSV.	past. As a result, various	the provision of the energy	
well as the Order of the Minister for	However, the current draft bill of	aspects of interoperability have	recharging service, as well as the	
the Ecological Transition and the	the amendment of the LSV	been widely ensured by now.	Order of the Minister for the	
Demographic Challenge where the	includes § 3 (4), which states		Ecological Transition and the	
information that the owners of the	that 'when setting up charging		Demographic Challenge where	
recharging points must send and	points, for reasons of		the information that the owners	
the terms to ensure the	interoperability, it must be		of the recharging points must	
Interoperability among different	ensured that an interface is		send and the terms to ensure the	
CPOs, which are a pending	available that can be used to		Interoperability among different	
development.	transmit authorisation and		CPOs, which are a pending	
	billing data as well as dynamic		development.	
	data.' ⁷⁸			

⁷⁷ USER-CHI Legal Questionnaire Q.No. 15

⁷⁸ Available at: https://www.bmwi.de/Redaktion/DE/Downloads/J-L/konsolidierter-text-lsv-novelle.pdf?__blob=publicationFile&v=10.

4.1.2.2 National implementation of the EPBD (2018/844/EU) and national building and construction law (SMAC, INDUCAR, CLICK)⁷⁹

• NATIONAL LAWS TO IMPLEMENTING ART. 8 (2) OF THE EPB-DIRECTIVE (2018/844/EU)⁸⁰

Table 34: National laws implementing Art. 8 (2) of the EPBD (2018/844/EU)

Barcelona	Berlin	Graz	Murcia	Turku
The requirements deriving out of the EPB-Directive (2018/844/EU) are included in the ITC-BT 52.	The Building and Electric Mobility Infrastructure Act (GEIG) needs to be considered (§§7, 11 GEIG).	Information not yet reported	The relevant modification of the Spanish Technical Building Code (CTE) was announced in September 2020. Accordingly, the minimum conditions necessary for the installation of charging points for EVs in car parks are established.	National legal measures in accordance to are Art. 8 (2) of the EPBD-Directive (2018/844/EU) not yet implemented.

⁷⁹ This subchapter addresses the legal requirements in different European cities which derive out of national building and construction laws, as well as the European Energy

Performance of Buildings Directive (2018/844/EU).

⁸⁰ USER-CHI Legal Questionnaire Q. No.7

• NATIONAL LAWS TO IMPLEMENTING ART. 8 (3) OF THE EPB-DIRECTIVE (2018/844/EU)⁸¹

Table 35: National laws implementing Art. 8 (3) of the EPBD (2018/844/EU)

Barcelona	Berlin	Graz	Murcia	Turku
The obligations in accordance with	The German GEIG needs to be	Information not yet reported	The national implementation law	The legal requirements for new
the EPBD are implemented in ITC-	considered. In accordance to		establishes the obligation that all	installed parking spots imply
BT 52. Moreover, the national "Law	§ 10 GEIG from January 1, 2025		buildings for other use than	that 50 % need to provide
on Climate Change and Energy	onwards, every non-residential		private residential purposes, that	charging infrastructure.
Transition", which is under	building with more than twenty		have more than 20 assigned	Moreover, regarding parking
discussion before the stage of	parking spaces must be		parking spaces, meet the same	spots with a size of 11-50
approval, will update the	equipped with at least one		requirements in terms of the	spots, there is a requirement for
requirements as well.	charging point. Exceptions		minimum number of charging	one charging station. For
	include non-residential buildings		stations before January 1, 2023.	parking spots with a size of 51-
	owned and predominantly used			100 parking spots there need to
	by small and medium-sized			be two charging points offered.
	enterprises, or existing buildings			For parking spots with a size
	if the cost of charging and			bigger than 101 spots three
	wiring infrastructure exceeds			charging points are required.
	seven percent of the total cost of			
	a major renovation.			

⁸¹ USER-CHI Legal Questionnaire Q. No.9

• NATIONAL LAWS IMPLEMENTING ART. 8 (5) OF THE EPB-DIRECTIVE (2018/844/EU)⁸²

Table 36: National laws implementing Art. 8 (5) of the EPBD (2018/844/EU)

Barcelona	Berlin	Graz	Murcia	Turku
The obligations in accordance with EPBD are implemented in ITC-BT 52. Moreover, the national "Law on Climate Change and Energy Transition", which is under discussion before the stage of approval, will update the requirements as well.	The German national implementation law GEIG needs to be considered (§§ 6, 8 GEIG).	The law which will implement the European target provided by Art. 8 (5) EPBD is under revision. It is expected that with the national implementation law unanimous approval by other owners in public parking areas of the buildings are not required anymore.	The national implementation laws establish the obligation for new construction buildings and those that undergo major intervention to have a preinstallation for 100% of the car park spaces, in the case of private residential buildings, and for 20% of the car park spaces in the rest of the buildings. Additionally, the latter with more than 10 car park spaces, must have recharging station for every 40 car park spaces. The requirement is stricter for buildings, which belong to the General State Administration, demanding one station for every 20 car park spaces.	The national Finnish laws applicable provide higher standards then the requirements set out in Art. 8 (5) EPBD. Therefore, no additional national laws are implemented in order to meet the European targets.

⁸² USER-CHI Legal Questionnaire Q. No. 8

• BUILDING PERMITS NEEDED FOR CP INSTALLATION IN PUBLIC SPACE

Table 37: Building permits needed for the installation of charging points in public space

Barcelona	Berlin	Graz	Murcia	Turku
Permits for necessary civil works are needed, as well as permits from the town hall to do the civil works.	A building permit is usually not needed to set up charging points in Berlin. (§ 61 (1) No. 15 d) BauO Bln)	Permits from the city road department and city traffic planning are needed to build charging infrastructure in public spaces.	A municipal building permit is needed to set up charging infrastructure in public spaces. Moreover, the installation project will have to be presented and registered in the correspondent public administration department.	A building permit is needed to build charging infrastructure for EVs.

• INVOLVEMENT OF PUBLIC AUTHORITIES AND PUBLIC BODIES⁸³

Table 38: Involvement of public authorities and public bodies

Barcelona E	Berlin	Graz	Murcia	Turku
(municipalities) issues theisinstallation and constructionspermits for the chargingtinfrastructure.infrastructure.	The road construction authority is involved in deciding upon the special use permit needed for the construction of charging infrastructure in public spaces due to road traffic law.	The city road department is responsible for the management of public space in general and therefore involved in the installation process of charging infrastructure on public ground.	The city council has the competences to grant permissions or licenses to install charging points in the public space. Regional administrations oversee legalizing the electric works and related installations.	The building permit unit is part of the local city authority. Moreover, the involved transport planning unit is also a part of the local city authority. The energy grid provider, which is involved in the installation process of charging points is not embedded in the internal administration structure.

⁸³ USER-CHI Legal Questionnaire Q. No.2

• DIFFERENT STEPS OF ADMINISTRATIVE APPROVAL⁸⁴

Table 39: Different steps of administrative approval

Barcelona	Berlin	Graz	Murcia	Turku
 Elaboration of a technical project for a charging point (or a plan for a network of charging points), Present the project or the plan to the municipality and ask for a permission to operate the charging points in the street, Present the project to the DSO and ask to plan the grid connections to the charging points, Ask municipality for permission to do civil works in the street, Installation of charging points in the street, Connection of charging points to the grid by electric distribution company, Registration of the charging point installed in the regional administration. 	 CPO applies for special use permit for the installation of charging points at the civil engineering office offering a location plan. CPO applies to the road traffic authority for an order for the desired location with a plan for the necessary licence plates and marks. CPO applies to the network operator for a network connection for the desired location providing a conduit plan. 	 Request to use public space at city road department, Approval by the committee of the historic centre, Request for approval for construction. 	 Request of a new electric supply - The exact location of the planned e-charging stations, must be specified, Elaboration of the technical documentation to legalize the e- charging point (technical report of project), Request for works license to the city council. The city will assess the documentation and grant the license Promotor can initiate the works after receiving the necessary permits Presentation of technical documentation Communication to DSO that civil works are done 	A building/planning permission and the registration of a grid connection is necessary for the administrative approval.

⁸⁴ USER-CHI Legal Questionnaire Q. No.3

• REGULATION FOR THE INSTALLATION AND OPERATION OF CHARGING INFRASTRUCTURE⁸⁵

Table 40: National regulations for the installation and operation of charging infrastructure

Barcelona	Berlin	Graz	Murcia	Turku
The ITC-BT 52 ⁸⁶ of the Electrotechnical Regulation for low voltage, approved by Royal Decree 842/2002, of 2 August, and other complementary technical instructions are modified" is applicable at the national level. The ITC-BT 52 is a technical guideline, which addresses the charging point installation in Spain. The ITC-BT 52 is a compulsory document like a law.	The German national Charging Point Decree (LSV) only addresses questions of interoperability regarding plugs (§3 (1), (2), (3) LSV). A revision of the LSV is planned. All public charging points must be displayed and registered at the Federal Network Agency (BNetzA) according to § 4 and § 5 LSV. CPOs must meet additional technical requirements defined by local authorities in Berlin in order to receive charging points installation permits for public spaces.	The federal construction law (§ 92a Stmk BauG) needs to be considered.	The ITC BT-52 (see Barcelona) is also applicable in the city of Murcia.	Information not yet reported

⁸⁶ Royal Decree 1053/2014 of 12 December, approving a Complementary Technical Instruction (ITC) BT 52 "Special purpose installations. Infrastructure for the recharging of EVs" or ITC-BT 52

⁸⁵ USER-CHI Legal Questionnaire Q. No.4

• FIRE PROTECTION PROVISIONS FOR CHARGING POINTS⁸⁷

Table 41: Fire protection provisions for charging points

Barcelona	Berlin	Graz	Murcia	Turku
The ITC-BT 52 includes the	Special fire protection measures	Information not yet reported	The ITC-BT 52 also needs to be	The fire protection provisions
requirements on fire protection.	may be necessary in commercial		considered in regard of the	need to be considered in
Most of this provision refers to the	and industrial areas and in		general prescriptions stablished	dependence on the power of the
protection of switches, as well as	garages. No highly flammable		for general purposes in electric	charging point.
the needed protection equipment	materials may be stored in the		facilities.	
based on EN standards.	immediate surrounding of the			
	charging points.			

⁸⁷ USER-CHI Legal Questionnaire Q. No.5

LOCAL PROVISIONS FOR THE PRESERVATION OF HISTORICAL MONUMENTS AFFECTING THE CONSTRUCTION OF CHARGING POINTS⁸⁸

Table 42: Local provisions for the preservation of historical monuments affecting the construction of charging points

Barcelona Berlin	in	Graz	Murcia	Turku
protection of historical monumenthistorneed to be followed around(DSchhistorical monuments, building, orconsidarchaeological sites. However,Thesesince charging points are ratherinfluent	oric monuments in Berlin chG Bln) should be sidered § 10 (1) DSchG Bln.	Public infrastructure, which is installed in areas downtown, needs the additional approval by the committee of the historic centre.	Information not yet reported	The location of charging infrastructure needs to be approved by scenery and history boards, which take the specific requirements for charging points in the area of historical buildings into account.

⁸⁸ USER-CHI Legal Questionnaire Q. No.6

4.1.2.3 Public procurement and concession law and subsidies (CLICK, INSOC, INDUCAR, SMAC)

• IMPLEMENTATION LAWS OF DIRECTIVE 2014/23/EU (AWARDING OF CONCESSION CONTRACTS) INTO THE NATIONAL LEGAL FRAMEWORK®

Table 43: National laws implementing Directive 2014/23/EU

Barcelona	Berlin	Graz	Murcia	Turku
The Directive 2014/23/EU has been implemented by the law 9/2017 and the Royal Decree-Law 3/2020.	The Act against Restraints of Competition (GWB) was issued in 2016, which is implementing: Directive 2014/23/EU, as well as Directive 2014/24/EU and Directive 2014/25/EU. Moreover, the Award of Concessions Ordinance (KonzVgV) ⁹⁰ a new concession ordinance, was implemented.	Information not reported	The same information already referred to in Q. No. 16 applies	Information not reported

⁸⁹ USER-CHI Legal Questionnaire Q.No. 18

⁹⁰ available at: https://www.gesetze-im-internet.de/konzvgv/BJNR068300016.html, last accessed: 04.01.2021.

IMPLEMENTATION LAWS OF DIRECTIVE 2014/24/EU (PUBLIC PROCUREMENT) INTO THE NATIONAL LEGAL FRAMEWORK⁹¹ ٠

Obligation to publish an announcement of contract modification and the allegations and reports collected, in addition the possibility • of terminating contracts during their validity is introduced when the legally established requirements that allow their modification are not met.

Table 44: National laws implementing Directive 2014/24/EU

Barcelona	Berlin	Graz	Murcia	Turku
The applicable legal framework	The Act against Restraints of	Information not yet reported	The Directive 2014/24/EU	Information not yet reported
the implementation of Directive	Competition (GWB) was		(Public procurement) has	
2014/24/EU has been done by	issued in 2016 ⁹³ , which is		been incorporated in the	
the Law 9/2017, of 8	implementing: Directive		Spanish legal framework by	
November, on 'Public Sector	2014/25/EU, as well as		Royal Decree-Law 3/2020, of	
Contract', which has	Directive 2014/23/EU and		February 4, on urgent	
transposed the Directive	Directive 2014/24/EU. In		measures. Various directives	
partially. ⁹²	addition, the Directive was		of the European Union have	
	implemented by modifying the		been incorporated into the	
	Public Procurement		Spanish legal system in the	
	Ordinance (VgV)94		field of public procurement in	
			certain sectors; private	
			insurance; of pension plans	

⁹¹USER-CHI Legal Questionnaire Q.No. 16

⁹² Ley 9/2017, de 8 de noviembre, de Contratos del Sector Público, por la que se transponen al ordenamiento jurídico español las Directivas del Parlamento Europeo y del Consejo 2014/23/UE y 2014/24/UE, de 26 de febrero de 2014, (available at: https://www.boe.es/buscar/act.php?id=BOE-A-2017-12902, last accessed: 04.01.2021). ⁹³ available at: https://www.gesetze-im-internet.de/gwb/, last accessed: 04.01.2021.

⁹⁴ available at: https://www.gesetze-im-internet.de/vgv_2016/, last accessed: 04.01.2021.

91 D1.3: Technical and legal requirements for USER-CHI solutions

Barcelona	Berlin	Graz	Murcia	Turku
			and funds; of the tax area and tax litigation.	

• IMPLEMENTATION LAWS OF DIRECTIVE 2014/25/EU (ON PROCUREMENT BY ENTITIES OPERATING IN THE WATER, ENERGY, TRANSPORT AND POSTAL SERVICES SECTOR)⁹⁵

Table 45: National laws implementing Directive 2014/25/EU

Barcelona	Berlin	Graz	Murcia	Turku
The applicable legal framework Directive 2014/25/UE has been transposed to the national legislation by the Royal Law- Decree 3/2020. This law has also completed the implantation of Directive 2014/23/UE. ⁹⁶	The GWB was issued in 2016, which is implementing: Directive 2014/25/EU, as well as Directive 2014/23/EU and Directive 2014/24/EU. Moreover, the directive has been transposed into the Sectors Ordinance (SektVO) ⁹⁷ which is a federal state decree. The SektVO only applies to public contracts that exceed the threshold value in § 2 VgV.	Information not yet reported	The same information already referred to in Q. No. 16 applies.	Information not yet reported

⁹⁶ Ley 9/2017, de 8 de noviembre, de Contratos del Sector Público, por la que se transponen al ordenamiento jurídico español las Directivas del Parlamento Europeo y del Consejo 2014/23/UE y 2014/24/UE, de 26 de febrero de 2014, (available at: https://www.boe.es/buscar/act.php?id=BOE-A-2017-12902, last accessed: 04.01.2021).

⁹⁷ available at: https://www.gesetze-im-internet.de/sektvo_2016/, last accessed: 04.01.2021.

⁹⁵ USER-CHI Legal Questionnaire Q.No. 17

• PUBLIC SUBSIDY DIRECTIVES TO PROMOTE CHARGING INFRASTRUCTURE, E.G. BY NATIONAL OR LOCAL AUTHORITIES⁹⁸

Table 46: Public subsidy directives to promote charging infrastructure (e.g., by national or local authorities)

Barcelona	Berlin	Graz	Murcia	Turku
The national and the regional	On a local level in Berlin the	Mainly national subsidies are	There are grants and subsidies	The housing cooperative (ARA)
administrations offer subsidies to	Senate Department for	available for the deployment of	coming from the national	are eligible for financial help for
promote the deployment of	Economic Affairs Energy and	charging infrastructure. The	government and in some cases	the construction of the charging
charging infrastructure. There is an	Operations (SenWEB) is	subsidies are tied to certain	from the regional and local	infrastructure. In case the
annual plan (Plan MOVES),	subsidizing the deployment of	requirements e.g.,	administrations. Some recent	charging infrastructure operates
approved by the national	charging infrastructure through	interoperability and free access	examples are the MOVES II	with electric power higher than
administration and managed by the	the funding programme for	for consumers.	Program.	11kWh the total amount of the
regional administration, which	business-oriented			financial aid is raised. Moreover,
regulate the subsidies for charging	electromobility (WELMO).99 On			the national Energy Authority
infrastructure as a financial aid. The	the federal level the BMVI aims			(Energiavirasto) has its own
granting of this subsidies is tied to	at funding the construction of at			infrastructure aid regarding
charging point characteristics, e.g.,	least 15.000 publicly accessible			public chargers (for high power
power, connectors, non-	charging stations with a total of			charging) and for electric bus
discriminatory access, and location.	300 million euros by the end of			charging systems.
	2020.100			

- ⁹⁹ SenWEB, Förderprogramm Wirtschaftsnahe Elektromobilität, Pressemitteilung, 30.09.2020.
- ¹⁰⁰ BMVI, Förderprogramm Ladeinfrastruktur.

⁹⁸ USER-CHI Legal Questionnaire Q.No. 19

• NATIONAL PUBLIC PROCUREMENT LAW REGULATING THE DEPLOYMENT OF CHARGING INFRASTRUCTURE ¹⁰¹

Table 47: National public procurement laws regulating the deployment of charging infrastructure

Barcelona	Berlin	Graz	Murcia	Turku
There are no national rules	There is no national German	Information not reported	There are no national rules	Information not reported
belonging to public procurement	legislation, which deals		belonging to public procurement	
law regulating specifically the	specifically with the		law regulating specifically the	
assignment of constructing	procurement process for		assignment of constructing	
charging infrastructure. However,	charging infrastructure. The VgV		charging infrastructure. However,	
the new 'Law on Climate Change	is influenced by the European		the new "Law on Climate Change	
and Energy Transition', will assign	legal framework. However, the		and Energy Transition", will	
some responsibilities to the gas	procurement landscape on the		assign some responsibilities to	
station networks (owned by the	deployment of public charging		the gas station networks (owned	
main companies in the energy	infrastructure is influenced by		by the main companies in the	
sector) in order to develop the	the national subsidy directives		energy sector) in order to	
charging points infrastructure.	("Förderrichtlinie"), which		develop the charging points	
	promote the implementation of		infrastructure.	
	municipal electromobility			
	concepts amongst other topics			
	in regard to market run-up of			
	electro-mobility. ¹⁰²			

¹⁰¹ USER-CHI Legal Questionnaire Q.No. 20¹⁰² BMVI, Elektromobilität mit Batterie

4.1.2.4 Tender specification (CLICK, INSOC, INDUCAR, SMAC)

• LOCAL TENDER SPECIFICATIONS FOR CHARGING INFRASTRUCTURE DEMANDING STRONGER MINIMUM STANDARDS CONCERNING E.G., INTEROPERABILITY COMPARED TO THE EUROPEAN OR NATIONAL FRAMEWORK¹⁰³

Table 48: Local tender specifications for charging infrastructure demanding minimum standards/requirements (e.g., for interoperability)

Barcelona	Berlin	Graz	Murcia	Turku
The local tender requirements for charging points are in usual the same as in the EU or national legislations.	The "Berlin model" was the first municipal concept for the deployment of public charging infrastructure for EVs in Germany. The requirements integrated in the tender process were already aimed at including the interoperability requirements and a uniform user interface throughout the city laid out by the AFID, even though the implementation of the AFID into the national framework was established later through the LSV - Charging Point Ordinance in 2016 with far fewer requirements. ¹⁰⁴	Information not reported	The city of Murcia did not demand stronger minimum standards on interoperability or safety standards for charging infrastructure compared to the EU context. The city launched a public tender process in 2015 to purchase 6 conventional charging points (7.6 kW) and during the tender process no special requirements for interoperability were included within the specifications.	Information not reported

¹⁰³ USER-CHI Legal Questionnaire Q. No. 28

¹⁰⁴ Senatsverwaltung für Stadtentwicklung und Wohnen, Berliner Modell wird Realität: erste Ladesäule für Elektrofahrzeuge mit neuem Konzept geht ans Netz, 2015.

4.1.2.5 Energy law (SMAC, INDUCAR, INSOC)

• SAFETY REGULATIONS FOR THE OPERATION OF CHARGING POINTS FOR EVS $^{105}\,$

Table 49: Safety regulations for the operation of charging infrastructure for EVs

Barcelona	Berlin	Graz	Murcia	Turku
The electrical safety regulation,	The notification requirement	Information not reported	The electrical safety regulation,	The following regulation and standards
applicable to the installation /	Low Voltage Connection		applicable to the installation /	regarding the charging infrastructure
operation of electric charging	Ordinance (NAV) ¹⁰⁶ is		operation of electric charging	for electric cars apply: (66/2009,
infrastructure for vehicles are	applicable. This requirement is		infrastructure for vehicles are	707/2011, 478/2017, SFS 5610, SFS
outlined in detail in the national	at least indirectly a safety		outlined in detail in the national	6000, SFS 6000-5-52, SFS 6000-7-
regulation ITC-BT 52.	regulation. Moreover, standards		regulation ITC-BT 52.	722, SFS-EN 50620, SFS-EN 60309,
	for fire protection need to be			SFS-EN 62196).
	considered.			

¹⁰⁵ USER-CHI Legal Questionnaire Q. No. 23

¹⁰⁶ available at: https://www.gesetze-im-internet.de/nav/, last accessed: 04.01.2021.

NATIONAL IMPLEMENTATION OF EU LEGISLATION ON THE INTEGRATION OF EVS AND RENEWABLE ENERGY SOURCES (RES) INTO SMART GRID SERVICES (DIRECTIVE 2019/944/EU - ON COMMON RULES FOR THE INTERNAL MARKET FOR ELECTRICITY)¹⁰⁷

Table 50: National implementation of EU legislation on the integration of EVs and RES into Smart Grid Services (Directive 2019/944/EU)

Barcelona	Berlin	Graz	Murcia	Turku
Within the legal framework of	The Directive 2019/944/EU has	Information not reported	The Directive 2019/944/EU has	Directive 2019/944/EU has been
Spain, the Directive 2019/944/EU	not been fully implemented		only been partially transposed	implemented in the Finnish
has only been partially transposed	within the German legal		into the "Real Decreto-ley	national legal framework.
into the Royal Decree-Law	framework yet (Status		23/2020, de 23 de junio, por el	
23/2020 approving measures in the	December 2020). However, the		que se aprueban medidas en	
field of energy and other areas for	federal council has emphasized		materia de energía y en otros	
economic recovery. ¹⁰⁸ The Royal	the importance of the		ámbitos para la reactivación	
Decree-Law 23/2020 is a partial	implementation for the		económica". ¹¹² The "Real	
update of the main national law	digitalization of the energy		Decreto-ley 23/2020" is a partial	
about the electric market	transition.111		updating of the main national law	
regulation: the Law 24/2013 on the			about the electric market	
Electricity Sector" ¹⁰⁹ The first			regulation: the "Ley 24/2013, de	
national legislation on the topic of			2 de diciembre, del Sector	

¹⁰⁷ USER-CHI Legal Questionnaire Q. No. 46

¹⁰⁸ Real Decreto-ley 23/2020, de 23 de junio, por el que se aprueban medidas en materia de energía y en otros ámbitos para la reactivación económica, (available at: https://www.boe.es/buscar/act.php?id=BOE-A-2020-662, last accessed: 04.012020).

¹⁰⁹ Ley 24/2013, de 26 de diciembre, del Sector Eléctrico, (available at: https://www.boe.es/buscar/act.php?id=BOE-A-2013-13645, last accessed: 04.01.2021).

¹¹¹ Beschluss des Bundesrates, Entschließung des Bundesrates - Digitalisierung der Energiewende - Rasche Umsetzung der Strombinnenmarktrichtlinie (RL 2019/944/EU), 03.07.2020.

¹¹² Real Decreto-ley 23/2020, de 23 de junio, por el que se aprueban medidas en materia de energía y en otros ámbitos para la reactivación económica, (available at: https://www.boe.es/buscar/act.php?id=BOE-A-2020-662, last accessed: 04.012020).

98 D1.3: Technical and legal requirements for USER-CHI solutions

Barcelona	Berlin	Graz	Murcia	Turku
RES and Smart Grid Services was			Eléctrico."113 The first national	
established within two laws: the			legislation on the topic of RES	
Royal Decree-Law 15/2018 on			and Smart Grid Services was	
urgent measures for energy			established within two laws: the	
transition and consumer protection,			"Real Decreto-ley 15/2018, de 5	
and the Royal Decree 244/2019,			de octubre, de medidas urgentes	
wich regulates the administrative,			para la transición energética y la	
technical and economic conditions			protección de los consumidores"	
for the self-consumption of			mentioned above, and the "Real	
electrical energy ¹¹⁰ . Moreover,			Decreto 244/2019, de 5 de abril,	
additional legislation, which will			por el que se regulan las	
supplement the legislation on			condiciones administrativas,	
economic regulation of RES, such			técnicas y económicas del	
as the new Law on Climate Change			autoconsumo de energía	
and Energy Transition in Spain is			eléctrica". ¹¹⁴ Same as Barcelona	
currently in progress.				

¹¹⁰ Real Decreto 244/2019, de 5 de abril, por el que se regulan las condiciones administrativas, técnicas y económicas del autoconsumo de energía eléctrica, (available at: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-5089, last accessed: 04.01.2020).

¹¹³ Ley 24/2013, de 26 de diciembre, del Sector Eléctrico, (available at: https://www.boe.es/buscar/act.php?id=BOE-A-2013-13645, last accessed: 04.01.2021).

¹¹⁴ Real Decreto 244/2019, de 5 de abril, por el que se regulan las condiciones administrativas, técnicas y económicas del autoconsumo de energía eléctrica, (available at: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-5089, last accessed: 04.01.2021).

 NATIONAL IMPLEMENTATION LAWS TO FACILITATE THE CONNECTION OF PUBLICLY ACCESSIBLE AND PRIVATE CHARGING POINTS TO THE DISTRIBUTION NETWORK AND THE PROVISION OF NON-DISCRIMINATORY COOPERATION BETWEEN THE ACTORS INVOLVED (DIRECTIVE 2019/944/EU - ON COMMON RULES FOR THE INTERNAL MARKET FOR ELECTRICITY)¹¹⁵

Table 51: National implementation laws to facilitate the connection of charging points to the distribution network (Directive 2019/944/EU)

Barcelona	Berlin	Graz	Murcia	Turku
No regulation is implemented yet.	§ 17 (1) 1 EnWG states that, the	Information not reported	No regulation is implemented yet	Information not reported
However, the demand for new	operators of energy supply grids		However, the demand for new	
charging points is currently not	(ESCs) are obliged to guarantee		charging points is currently not	
higher than the availability of	conditions that are technically		higher than the availability of	
access to the distribution grid.	and economically non-		access to the distribution grid.	
However, the Royal Decree-Law	discriminatory for the		However, the Royal Decree-Law	
23/2020 include some measures	connection of charging points to		23/2020 include some measures	
facilitating the installation of	the grid.		facilitating the installation of	
charging points along the national			charging points along the	
road network.			national road network.	

NATIONAL LEGISLATION ON THE COMMISSIONING OF A STUDY TO EVALUATE WHETHER FLEXIBILITY SERVICES ARE ECONOMICALLY EFFICIENT (ART.33 DIRECTIVE 2019/944/EU)¹¹⁶

Neither in Spain, nor in Finland, nor in Germany has a study to evaluate whether flexibility services are economically efficient (Art.33 Directive 2019/944/EU) been commissioned yet.

 ¹¹⁵ USER-CHI Legal Questionnaire Q. No. 47
 ¹¹⁶ USER-CHI Legal Questionnaire Q. No. 48

DSOs RIGHT TO ADJUST CONSUMER'S DEMAND FROM CONTROLLABLE LOADS¹¹⁷

Table 52: DSOs right to adjust consumer's demand from controllable loads

Barcelona	Berlin	Graz	Murcia	Turku
The right of DSOs to adjust	§ 14 a EnWG enables DSOs to	Information not reported	The right of DSOs to adjust	DSOs do not have the right to
consumer's demand depends on	actively control the charging of		consumer's demand depends on	adjust consumer's demand,
the charging point location on the	EVs in exchange for discounted		the charging point location on the	except for the situation of
distribution network. There are no	network charges for EV		distribution network. There are	electricity shortage. In these
general restriction criteria	charging. A concretizing		no general restriction criteria	cases, Fingrid will contact the
applicable to this right.	regulation provided for by § 14		applicable to this right.	local network operators to take
	a EnWG has not been issued			necessary action to restrict loads
	yet. ¹¹⁸			according to the plans prepared
				beforehand.

¹¹⁷ USER-CHI Legal Questionnaire Q. No. 49¹¹⁸ Status: January 2021.

• NATIONAL LAWS REGULATING THE PHYSICAL ELECTRICITY GRID REGARDING OPERATION, MAINTENANCE, INTERACTION REGARDING RELEVANT STAKEHOLDERS¹¹⁹

Table 53: National laws regulating the physical electricity grid regarding operation, maintenance, interaction with stakeholders

Barcelona	Berlin	Graz	Murcia	Turku
BarcelonaThe topics of transport and distribution remain regulated activities by the national administration, whereas the power generation and commercialization in the electricity market are liberalized.The national administration and the regional administrations establish the Plan for the Development of the Electricity Transmission Network.This plan is the basis for the evolution of the physical electricity grid on a national level. This process is also linked to the pan- European electricity infrastructure development plan (ENTSO-E's 10-	Berlin The Energy Industry Act (EnWG) seeks ensuring the most secure supply of electricity and gas to the general public, which is increasingly based on renewable energies. Part 6 of the EnWG regulates in §§ 49 – 53b) the provisions on the security and reliability of the energy supply.	Graz Information not reported	MurciaThe operation and maintenance of the electricity grid at Spanish national level is assigned by law ("Ley 24/2013") a public-private company called "Red Eléctrica de España (REE)", which manages the national electricity grid.120 At regional level, the operation and maintenance of the distribution network. as well as the function of manager of the electricity grid transport, is assigned to a private company.Operation and maintenance of the Spanish electricity grid is assigned by the Law 24/2013 to the Spanish Electricity Network.121 At regional	Information not reported

¹¹⁹ USER-CHI Legal Questionnaire Q. No. 50

¹²⁰ RED, Eléctrica de Espana, (available at: www.ree.es, last accessed: 04.01.2021).

¹²¹ RED, Eléctrica de Espana, (available at: www.ree.es, last accessed: 04.01.2021).

102 D1.3: Technical and legal requirements for USER-CHI solutions

Barcelona	Berlin	Graz	Murcia	Turku
year network development plan:			level, distribution network's	
TYNDP).			operation and maintenance and	
			the management of the electricity	
			grid transport, is assigned to a	
			private company. Other specific	
			regulations are: P.O.2.5	
			Production unit maintenance	
			plans ¹²² ; P.O.3.4 Programming	
			the transmission network	
			maintenance ¹²³ ; P.O. 3.5	
			Maintenance programming of the	
			distribution network affecting the	
			operation of the electricity	
			system. ¹²⁴	

¹²² available at: https://www.ree.es/sites/default/files/01_ACTIVIDADES/Documentos/ProcedimientosOperacion/PO_resol_17mar2004_correc_c.pdf, last accessed: 04.01.2020.

¹²³ available at: https://www.ree.es/sites/default/files/01_ACTIVIDADES/Documentos/ProcedimientosOperacion/PO_resol_20jul2004.pdf, last accessed: 04.01.2020.

¹²⁴ available at: https://www.ree.es/sites/default/files/01_ACTIVIDADES/Documentos/ProcedimientosOperacion/PO_resol_28jul2006.pdf, last accessed: 04.01.2020.

• DEFINITION OF CHARGING POINTS FOR EVS AS FINAL COSTUMERS/USERS OR SUPPLIERS OF ELECTRICITY UNDER THE APPLICABLE NATIONAL REGULATION¹²⁵

Table 54: Definition of charging points for EVs as final costumers/users or suppliers of electricity under the applicable national regulation

Barcelona	Berlin	Graz	Murcia	Turku
In the Spanish national legislation Charging points are defined as electricity suppliers. One of the main difficulties for the installation of EV charging infrastructures for companies in the services and hotel sectors was the legal obligation to include the charging activity management as a corporate purpose. Thanks to the modifications to the Decree Law 15/2018, any company (hotels, car parks, shopping centres, company car parks, etc.) or freelancers can install charging points in their facilities and offer this service, although in any case they must comply with industrial safety regulations.	In accordance to § 3 No. 25 EnWG charging points for EVs are categorised as final users within the meaning of the EnWG and the ordinances based on the Act.	Information not reported	Charging points are defined as suppliers of electricity in the Spanish national legislation. The Royal Decree Law 15/2018 sets a few modifications for overcoming some barriers related to sale of electricity from electric charging points in Spain. Same as Barcelona	Information not reported

¹²⁵ USER-CHI Legal Questionnaire Q. No. 55

• NATIONAL ENERGY LAW REGULATIONS CONCERNING REPORTING OBLIGATIONS, WHICH MUST BE OBSERVED BY CPOS¹²⁶

Table 55: National energy law regulations concerning reporting obligations that must be observed by CPOs

Barcelona	Berlin	Graz	Murcia	Turku
The Spanish legal framework Royal	Concerning Germany and the	Concerning the Austrian legal	Same as Barcelona	The Finnish national legal
Decree-Law 15/2018 for reporting	national legal framework, the	framework reporting		framework does not apply
commission and decommissioning,	Renewable Energy Sources Act	obligations arising out of the		reporting obligations, which
and Royal Decree-Law 23/2020 for	(EEG) ¹²⁷ defines charging point	Electricity Industry and		must be undertaken by charging
the authorization process and grid	operators as suppliers of	Organisation Act (ELWOG)		point operators.
connection of charging stations up	electricity instead of final users.	needs to be considered.		
to 250 kW are applicable.	Therefore, CPOs must fulfil			
The following regulations should be	reporting obligations deriving			
considered:	from § 70 EEG. Accordingly,			
considered.	CPOs must report specific basic			
Law 24/2013 on the Electricity	data to the transmission system			
Sector (BOE 12/27/2013) which	operator as well as their used			
regulates the quality of electricity	amount of electricity.			
supply. Moreover, Article 51 e)	Degarding the Cormon notional			
establishes that the General State	Regarding the German national			
Administration will determine the	legal framework, the notification			
objective service quality indexes, to	requirement pursuant to Section			
be met both at the individual user	19 (2) of the Low Voltage			
level and for each geographical	Connection Ordinance (NAV) of			
area served by a sole distributor.	2019 is applicable.			

¹²⁶ USER-CHI Legal Questionnaire Q. No. 56

¹²⁷ available at: https://www.gesetze-im-internet.de/eeg_2014/, last accessed: 04.01.2020.

D1.3: Technical and legal requirements for USER-CHI solutions

Barcelona	Berlin	Graz	Murcia	Turku
The Royal Decree 1955/2000 (BOE				
12/27/2000) regulates the activities				
of transport, distribution,				
marketing, supply and				
authorization procedures for				
electric power installations.				
In addition,The order ECO /				
797/2002 (BOE 04/13/2002) by				
which the procedure for measuring				
and controlling the continuity of the				
electricity supply is approved.				
Moreover, the 12. additional				
provision of Royal Decree				
738/2015 (BOE 08/01/2015)				
applies.				

4.1.2.6 Legal framework regulating road use (SMAC, INDUCAR, INSOC, CLICK)

PERMISSIONS NEEDED TO SET UP CHARGING INFRASTRUCTURE IN PUBLIC SPACES BASED ON NATIONAL ROAD USE REGULATION 128

Table 56: Permissions needed to set up charging infrastructure in public spaces based on national road use regulation

Barcelona	Berlin	Graz	Murcia	Turku
No permissions based on road use regulations are needed for charging infrastructure in public urban spaces. In public spaces along the national or regional roads the permission from the national or regional road administration are the most important (National road regulation: Law 37/2015 of 29 September on Roads129; Regional road regulation: Legislative Decree 2/2009, of 25 August, approving	In order to set up charging infrastructure in public spaces a special use permit is needed. See question 2 for more information.	Information not reported	The council must grant a permit to use public space for the installation of charging points.	Information not reported

¹²⁸ USER-CHI Legal Questionnaire Q. No. 29

¹²⁹ Ley 37/2015, de 29 de septiembre, de carreteras, (available at: https://www.boe.es/buscar/act.php?id=BOE-A-2015-10439, last accessed: 04.01.2021).

4.1.2.7 Measuring and calibration laws (SMAC, INDUCAR, INSOC)

• TRANSPOSITION LAWS OF DIRECTIVE 2014/32 (EU) (MEASURING INSTRUMENTS DIRECTIVE) APPLICABLE TO CHARGING POINTS¹³¹

Table 57: Transposition laws of the Measuring Instruments Directive (2014/32/EU)

Barcelona	Berlin	Graz	Murcia	Turku
The Law 32/2014 of 22 December	The Directive is implemented	Information not reported	Information not reported	Information not reported
on Metrology and the Royal Decree	through the Act on the placing			
244/2016 of 3 June implementing	and making available on the			
the Law 32/2014 are applicable. ¹³²	Market of Measuring			
Especially the latter law	Instruments, their Use and			
accomplishes the implementation	Calibration (MessEG)- and on as			
of Directive 2014/32/EU into the	well Pre-packages (MessEG), as			
national legislation.	well as the Ordinance on the			
	revision of legal metrology and			
	adaptation to European case law			
	(MesswNeuRegV).			

Switzerland: The Directive is implemented through the Bundesgsetz über das Messwesen (MessG) - Federal law on metrology, Messmittelverordnung (MessMV) - Measuring Instruments Ordinance and the Verordnung des EJPD über Messmittel für elektrische Energie und Leistung (EMmV) - Ordinance of the EJPD on Measuring Instruments for Electrical Energy and Power.

¹³¹ USER-CHI Legal Questionnaire Q. No. 36

¹³² Real Decreto 244/2016, de 3 de junio, por el que se desarrolla la Ley 32/2014, de 22 de diciembre, de Metrología, (available at:

https://www.boe.es/diario_boe/txt.php?id=BOE-A-2016-5530, last accessed: 04.01.2021).

• NATIONAL RULES ON THE REGULATION OF THE CALIBRATION OF MEASURING DEVICES IN CHARGING INFRASTRUCTURE¹³³

Table 58: National rules on the regulation of the calibration of measuring devices in charging infrastructure

Barcelona	Berlin	Graz	Murcia	Turku
There is no special regulation	Regarding Berlin the charging	There is no special regulation	There is no special regulation	Measuring devices, which are
covering the topic of calibration of	infrastructure needs to be in	covering the topic of calibration	covering the topic of calibration	used as billing basis for
measuring devices in charging	conformity with Measurement	of measuring devices in	of measuring devices in charging	electricity consumption from EV
infrastructure.	and Calibration Act (MessEG), as	charging infrastructure.	infrastructure.	charging points need to be MID-
	well as the Measurement and			approved (Measuring
	Calibration Ordinance (MessEV),			Instruments Directive).
	Measuring Station Operation			
	Act (MsbG) and the Price			
	Indication Ordinance (PAngV).			
	See question 42 for more			
	information on price quotation			
	requirements.			

Switzerland: The MessMV governs measuring instruments. The ordinance of the EJPD on measuring instruments for electrical energy and power (EMmV) now specifically regulates electricity meters and instrument transformers (Art. 1 EMmV). However, Art. 2 (2) EMmV includes an exemption of electricity meters used by short-term customers at charging stations for EVs¹³⁴. Because of this explicit exception, which is not subject to a time limit, they must not be calibrated.

¹³³ USER-CHI Legal Questionnaire Q. No. 38

¹³⁴ Verordnung des EJPD über Messmittel für elektrische Energie und Leistung, (available at: https://www.admin.ch/opc/de/classified-compilation/20142068/index.html, last accessed: 04.01.2020).

• LEGAL DUTY TO SAVE DATA OF MEASURED VALUES OF ENERGY WITHIN THE ELECTRICITY METER OF THE CHARGING POINT¹³⁵

Table 59: Legal duty to save data of measured values of energy within the electricity meter of the charging point

Barcelona	Berlin	Graz	Murcia	Turku
In general, for electricity meter: two	In accordance to § 33 (3)	The legal duty to save data of	The information is requested by	The measuring of energy is
years (Order TEC/1281/2019, of 19	MessEG the charging point or	measured values of energy	regional administration and by	mandatory for charging
December, approving the	the system behind it must be	within the electricity meter of	the Spanish Ministry of energy on	infrastructure in the city of
complementary technical	able to save the meter readings	the charging point does not	a yearly basis with the aim of	Turku.
instructions to the unified	of all the constantly changing	arise within the Austrian legal	monitoring the usage of green	
regulation on measuring points in	user and assign them to a	framework.	infrastructure and estimate the	
the electrical system ¹³⁶ ; Royal	specific transaction. The		CO2 emissions saved.	
Decree 1110/2007, of 24 August,	customers must still be able to			
approving the unified regulation on	view individual charging			
measuring points in the electricity	processes at the relevant			
system. ¹³⁷	charging stations after they			
	have received the bill. ¹³⁸			

Switzerland: The legal duty to save data of measured values of energy within the electricity meter of the charging point does not arise (see Q. No. 38).

¹³⁵ USER-CHI Legal Questionnaire Q. No. 39

¹³⁶ Orden TEC/1281/2019, de 19 de diciembre, por la que se aprueban las instrucciones técnicas complementarias al Reglamento unificado de puntos de medida del sistema eléctrico, (available at: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-2, last accessed: 04.01.2020).

¹³⁷ Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento unificado de puntos de medida del sistema eléctrico, (available at: https://www.boe.es/buscar/doc.php?id=BOE-A-2007-16478, last accessed: 04.01.2020).

¹³⁸ Eneco – E-mobility Eichrechtskonforme Ladesäulen für eine transparente Abrechnung.

• LEGAL DUTIES TO COMPLY WITH LEGAL METROLOGY FOR USERS OF MEASURED VALUES, LIKE EMSPS¹³⁹

Table 60: Legal duties to comply with legal metrology for users of measured values (e.g., EMSPs)

Barcelona	Berlin	Graz	Murcia	Turku
The legal duty to comply with legal metrology is mostly relevant for CPOs.	The legal duty to comply with legal metrology is mostly relevant for CPOs (as users of measuring instruments) (German legislation: § 31 (2) MessEG). However, within the German legal framework in some situations, it could affect EMSPs, who manage the billing process between CPOs and final users while using the measured values.	There is no applicable legal duty to comply with legal metrology for users of measured values, like EMSPs.	The legal duty to comply with legal metrology is mostly relevant for CPOs.	Information not reported

¹³⁹ USER-CHI Legal Questionnaire Q. No. 40

• APPLICABILITY FOR OBLIGATIONS ARISING OF LEGAL METROLOGY REQUIREMENTS FOR BACK END SYSTEMS¹⁴⁰

Table 61: Applicability for obligations arising out of legal metrology requirements for backend systems

Barcelona	Berlin	Graz	Murcia	Turku
The obligations are only applicable for measuring devices. However, the requirements related to information to be provided, to the administration or to the consumers, could impact back end	Back-end systems could be additional equipment in the meaning of § 3 No. 24 MessEG and thus subject to legal metrology, if they determine additional measured quantities.	Within the Austrian legal framework, the stated obligations are not applicable for back end systems.	Information not yet reported.	Within the Finnish legal framework, the stated obligations are not applicable for back end systems. However, they could possibly be applicable, when the datahub is fully implemented.
systems. Switzerland: According to the curren				·

according to MessG, MessMV and EMmV. Therefore, no legal obligations arise out of legal metrology requirements for back end systems

¹⁴⁰ USER-CHI Legal Questionnaire Q. No. 41

• NATIONAL RULES REGULATING TARIFF MODELS REGARDING PAYMENT FOR THE USE OF PUBLIC CHARGING INFRASTRUCTURE¹⁴¹

Table 62: National rules regulating tariff models regarding the payment for the use of public charging infrastructure

Barcelona	Berlin	Graz	Murcia	Turku
No national rules regulating tariff models regarding payment for use of public charging infrastructure exists.	With regard to the German legal framework the Price Quotation Ordinance needs to be taken into account (PAngV) needs to be considered. The § 3 (PAngV) ¹⁴² has been interpreted by the Federal Ministry of Economy and Energy to the effect, that time-based pricing is inadmissible. ¹⁴³	A tariff of kilowatt-hour is not approved by Austrian laws so far, but an update on this legal matter is expected.	No national rules regulating tariff models in regard to payment for use of public charging infrastructure exists.	No national rules regulating tariff models in regard to payment for use of public charging infrastructure exists.

¹⁴¹ USER-CHI Legal Questionnaire Q. No. 42

¹⁴² available at: https://www.gesetze-im-internet.de/pangv/BJNR105800985.html, last accessed: 04.01.2021.

¹⁴³ BMWi, Preisangabe für und Abrechnung von Ladestrom für Elektromobile, 2018.

4.1.2.8 Data protection law (CLICK, INCAR, SMAC, INDUCAR, INSOC)

• NATIONAL REGULATIONS ON MANAGEMENT OF DATA MODELS FOR SMART METERING SYSTEMS ALREADY IMPLEMENTED REGARDING THE ISSUE OF CYBERSECURITY AND DATA PROTECTION OF SMART METERING SYSTEMS¹⁴⁴

Table 63: National regulations on the management of data models for smart metering systems already implemented regarding cybersecurity and data protection of smart metering systems

Barcelona	Berlin	Graz	Murcia	Turku
General data protection legislation	The Act on the Digitalisation of	Information not reported	General data protection	Information not reported
from the EU Directives has been	the Energy Transition (GDEW)		legislation from the EU Directives	
transposed to the national Spanish	created the legal basis for the		has been transposed to the	
legislation. Spanish national	rollout of modern metering		national Spanish legislation.	
legislation: 'Orden ministerial	equipment and smart metering		Spanish national legislation:	
IET/290/2012" ¹⁴⁵ and the "Royal	systems. In accordance, the		'Orden ministerial	
Decree-Law 1/2019" ¹⁴⁶ .	Metering Point Operation Act		IET/290/2012"148 and the "Real	
	(MsbG) regulates technical		Decreto-ley 1/2019" ¹⁴⁹ .	
	requirements, financing and			
	data communication and thus			
	lays the foundations for the			

¹⁴⁴ USER-CHI Legal Questionnaire Q. No. 54

¹⁴⁵ Amending Order ITC/3860/2007, of 28 December, revising electricity tariffs from January 1st, 2008 regarding the plan to replace analog meters for smart meters.

¹⁴⁶ Royal Decree-Law 1/2019 of 11 January on urgent measures to adapt the powers of the National Commission for Markets and Competition to the requirements arising from EU law in relation to Directives 2009/72/EC and 2009/73/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and natural gas.

¹⁴⁸ Amending Order ITC/3860/2007, of 28 December, revising electricity tariffs from January 1st, 2008 regarding the plan to replace analog meters for smart meters.

¹⁴⁹ Royal Decree-Law 1/2019 of 11 January on urgent measures to adapt the powers of the National Commission for Markets and Competition to the requirements arising from EU law in relation to Directives 2009/72/EC and 2009/73/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and natural gas.

114 D1.3: Technical and legal requirements for USER-CHI solutions

Barcelona	Berlin	Graz	Murcia	Turku
	introduction of smart metering systems. ¹⁴⁷			

¹⁴⁷BDEW, Smart Metering, (available at https://www.bdew.de/energie/digitalisierung/welche-rolle-spielen-smart-meter-fuer-die-digitalisierung-der-energiewende/, last accessed: 04.01.2021).

115

D1.3 Technical and legal requirements for USER-CHI solutions

REQUIREMENTS DERIVING OUT OF THE GENERAL DATA PROTECTION REGULATION

All legal frameworks in European Cities imply the requirements deriving out of the General Data Protection Regulation (GDPR) for the personal data generated using charging points by EV users. General information on the legal requirements deriving out of the GDPR is included in USER-CHI D11.2 "Research participants involvement report", D11.4 "Protection of personal data report", as well as D12.1 "H - Requirement No.1. "

• REQUIREMENTS DERIVING OUT OF NATIONAL LAWS ON DATA PROTECTION

Moreover, the legal frameworks in European Cities may also imply requirements deriving out national data protection laws. For the USER-CHI city partners an overview of the national data protection regulation is included in USER-CHI D11.2 "Research participants involvement report", as well as D12.1 "H - Requirement No. 1.".

4.2 USER-CHI product specific general requirements: CLICK - Charging Location and Holistic Planning Kit

4.2.1 Technical Requirements for CLICK¹⁵⁰

4.2.1.1 Technical Requirements on the CLICK Platform

The CLICK Platform will be made available online as an internet service. CLICK will consist of a web-frontend for interaction with the urban planner and a backend that runs the calculations and derive the proposals. The frontend must be compatible with the most prevalent web browser (at time of writing this deliverable: Chrome 87.0), while it should be compatible to the top 3 most common web browsers by market share (additionally Mozilla Firefox, Microsoft Edge). The frontend will have a public and a private area, where the publicly accessible area will contain basic information and the access restricted area will contain the planning process.

The main interaction with the user will be via a map interface. The map interface should be implemented by standard solutions and tools (e.g., leaflet based on OpenStreetMap). Data transfer as far as needed should use standard interfaces and protocols.

The focused user of CLICK is the urban planner. Therefore, CLICK frontend is to be designed to be used from within a professional environment with a desktop equipment setup (i. e. big high-resolution display, keyboard, and mouse usage). A design for tablet or smartphone use is not in the focus of CLICK development.

4.2.1.2 Technical Requirements on the CLICK Results

CLICK backend must support the storage of results and inputs. The user must be able to save his planning process and results at specific stages of the process. A reprocessing of calculations should be possible. Therefore, a database should be used.

CLICK results should be made available to the user via the web interface. A provision of the results in file format for export (e.g., csv, xlsx) should be considered, a provision of the result in standard geo exchange formats (e.g., shape format) could be considered. CLICK could offer a monitoring functionality. Usage data of existing charging points should be importable to CLICK

¹⁵⁰ At the time of writing this report, the task for specifying the high-level architecture of CLICK as well as basic requirements (T2.1) had just begun. Therefore, the technical requirements can be stated on a high level at this early stage only. CLICK is an online platform with digital interfaces to the user. Therefore, other than other USER-CHI products, technical requirements are limited. The focus of the technical requirements for CLICK is divided in two directions: the requirements on the CLICK platform itself as well as the requirements on the results.

117

D1.3: Technical and legal requirements for USER-CHI solutions

via a file-based transfer (comma separated csv file). CLICK could implement interfaces to other existing platforms (e. g. Hubject).

4.2.2 Legal Requirements for CLICK

4.2.2.1 Public, civil, or stakeholder participation (CLICK)

PUBLIC PARTICIPATION DURING THE PLANNING PROCEDURE¹⁵¹

Table 64 Public participation during the planning procedure

Barcelona	Berlin	Graz	Murcia	Turku
Information not yet reported.	Public participation is undertaken on a merely voluntary basis and not required by law. The communication of planned deployment of charging infrastructure is only recommended. ¹⁵²	Public participation during the authorization procedure of charging infrastructure is not mandatory.	Public participation is not mandatory for charging infrastructure projects, but strongly recommended. Therefore, Murcia initiated a public participation process during the planning process of the deployment of charging points in 2016. However, the result of this voluntary public participation process was binding.	Public participation is mandatory in land-use and building law in accordance with § 62 MRL, § 63 MRL. On this basis actions are taken systematically, and the different stakeholders need to be involved during the planning phase of the deployment.

¹⁵¹ USER-CHI Legal Questionnaire: Q. No.25, No.26, No.27

¹⁵² BMVI, DIFU - NOW, Genehmigungsprozesse der E-Ladeinfrastruktur in Kommunen: Strategische und rechtliche Fragen, 2014, p.7.

4.2.2.2 Data access and sharing (CLICK)

• REQUIREMENT OF CPOS TO PROVIDE REAL-TIME AVAILABILITY DATA OF THEIR CHARGING POINTS TO OTHER STAKEHOLDERS¹⁵³

Table 65 Requirement of CPOs to provide real-time availability data of their charging points to other stakeholders

Barcelona	Berlin	Graz	Murcia	Turku
There is no legal requirement for	There is no legal requirement for	There is a legal requirement for	CPOs might have to provide data	No such requirement applies
CPO's to provide real-time location	CPOs to provide real-time	CPO's to provide real-time	regarding the use of their	towards CPOs.
data regarding the availability of	availability data. § 5 (1) LSV	location data regarding the	charging points to local	
their charging points. However, in	merely lays down the duty to	availability of their charging	authorities in case the city council	
Catalonia the "Institut Català	notify the commissioning as well	points.	includes such requirements in the	
d'Energia (ICAEN)" has organized a	as the decommissioning of		technical specifications and	
tool, which offers real-time location	charging points but does not		terms of contract.	
and availability data concerning	include duties on further data			
charging points in the region.	access.			

¹⁵³ USER-CHI Legal Questionnaire: Q. No.43

• LEGAL REQUIREMENT OF CPOS TO PROVIDE HISTORIC CONSUMPTION DATA OF THEIR CHARGING POINTS TO LOCAL AUTHORITIES¹⁵⁴

Table 66 Legal requirement of CPOs to provide historic consumption data of their charging points to local authorities

Barcelona	Berlin	Graz	Murcia	Turku
The national legal framework does not imply the legal requirement of CPOs to provide historic consumption data of their charging points to local authorities.	There is no duty to provide historic consumption data as such to local authorities. However, the duty to provide information on electricity consumption generated by one charging point may arise out of measuring and calibration law regarding consumers. Moreover, reporting requirements may also arise out of § 12 (4) EnWG towards electricity supply network operators.	The national legal framework does not imply the legal requirement of CPOs to provide historic consumption data of their charging points to local authorities.	The national legal framework does not imply the legal requirement of CPOs to provide historic consumption data of their charging points to local authorities. However, regarding the city of Murcia this kind of requirements might arise on the basis of contractual terms established with the city authorities.	The national legal framework does not imply the legal requirement of CPOs to provide historic consumption data of their charging points to local authorities.

¹⁵⁴ USER-CHI Legal Questionnaire: Q. No.44

• PROVISIONS FOR DATA SHARING PROCESSES AMONG CPOS REGARDING MINIMUM STANDARDS AND INTEROPERABILITY¹⁵⁵

Table 67 Provisions for data sharing processes among CPOs regarding minimum standards and interoperability

Barcelona	Berlin	Graz	Murcia	Turku
There are currently very few data	There are currently no	Information not yet reported.	Interoperability is a requirement	Information not yet reported.
sharing processes among EMSPs	provisions for the data sharing		within all public procurement	
or/and CPOs. Some existing	processes among providers of		tenders concerning charging	
agreements between CPOs and	charging services regarding		infrastructure in Spain. Local	
EMSPs has been established under	minimum standards of		administrations require the	
the OCPI protocol.	interoperability. However		operators to use the Open	
	according to § 3 (4) Amendment		Charge Point Protocol (OCPP).	
	Draft of the LSV the requirement		This pursues the goal to enable	
	to use standardized		interoperability between different	
	communication protocols for		charging points (operators)	
	charging points operators is		within the same city.	
	included. ¹⁵⁶			

¹⁵⁵ USER-CHI Legal Questionnaire: Q. No.45

¹⁵⁶ available at: https://www.bmwi.de/Redaktion/DE/Artikel/Service/Gesetzesvorhaben/zweite-verordnung-zur-aenderung-der-ladesaeulenverordnung.html, last accessed: 04.01.2021.

4.3 USER-CHI product specific general requirements: INCAR - Interoperability, Charging and Parking Platform

4.3.1 Technical Requirements for INCAR

4.3.1.1 Location of park & charge services

For supporting the implementation of the INCAR application for finding parking spots and charging stations to increase the usage of existing infrastructure within the USER-CHI cities, there is a need to have an overview on the existing technical standards for the location of park & charge services for electromobility and the navigation to such infrastructure in the USER-CHI cities.

Italian and German USER-CHI project partners reported to be implementing several different standards for routing applications in their respective countries and cities. Italian USER-CHI partners reported they use company-specific standards, namely Enel X standards. German USER-CHI partners, on the other hand, reported that there are no common standards in Berlin where proprietary (worldwide) car routing services such as: google routing, here routing, Inrix routing, or Open Street Map Routing, are currently used. It was also pointed out that VMZ Berlin has its own router for Berlin-Brandenburg area, Public transport routing by the Transport association Berlin Brandenburg (Verkehrsverbund Berlin Brandenburg or VBB).

In a similar manner, Italian and German USER-CHI project partners reported to be implementing several different standards for geographic information systems (GIS) and geomatics in their respective countries and cities. Italian USER-CHI partners reported they use company-specific standards, namely Enel X standards. German USER-CHI partners, on the other hand, reported that there are no common standards for GIS analysis in Berlin. The current standards refer to the mainly to international standards issued by ISO/TC 211 GPS, expecting Galileo. Moreover, the Radio Technical Commission for Maritime Services (RTCM), RTCM 2.3, and RTCM 3.0 are also currently used.

• ROUTING SERVICE (RS)

The RS provided by INCAR aims at guiding the user to the EVSE charging process should be performed. The RS therefore firstly needs to request all charging stations of INCAR over OCPI in its Points of Interest (POI) module and, secondly, cover and support all areas where EVSEs integrated in INCAR are located.

The RS also includes a corresponding grid to perform the routing on. Different modes of transport are supported by the RS such as car, walk, and bike routing¹⁵⁷. However, the focus of the RS will be car routing as EV drivers are the main target group of INCAR services and applications. The RS can be connected modularly to different local RS, if available, for walk, bike, car, or public transport for specific areas. Moreover, car routing considers current traffic situations based on Floating Car Data (FCD) generated by GPS-enabled mobile devices or on-board computers installed in cars.

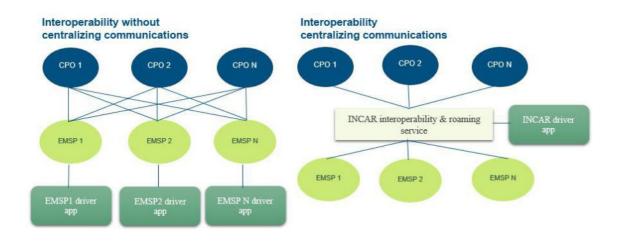
4.3.1.2 Communication protocols, eRoaming Platforms/eMobility Service Providers (EMSPs)

Existing standards for the technical communication between charging points and CPOs as well as between CPOs and EMSPs were reported by Spanish and German USER-CHI partners. They include information on the four main charging protocols:

Open Charge Point Protocol (OCPP) were reported as current standards for acquisition of information between charging points and CPOs. Moreover, Open Charge Point Interface (OCPI) were reported as current standard for acquisition of information between EMSPs and CPOs.

Spanish and German USER-CHI project partners reported to be implementing common standards for charging protocols (standards for data sharing processes among providers of charging services) in their respective countries and cities. OCPI – version 2.1.1 (e.g., NKL Nederland); OICP (e.g., Hubject) are used in both countries, while OCHP – version 1.4 (e.g., eClearingNet) and proprietary interfaces (e.g., Berlin Authentication Platform) are also used in Germany.

• INTEROPERABILITY AND ROAMING SERVICES


INCAR should enable the following functionalities related to the recharge of EVs: 1) Provide static information about EVSEs such as geocoordinates, available plug types and amperage; 2) Provide real-time information of EVSEs such as availability or price; 3) Reservation of EVSEs.; 4) Management of the start and the end of transactions and monitoring of their status and evolution; and 5) Control and recording of energy consumption per transaction and in time.

¹⁵⁷ The routing services can process different input parameters that the end-users can set in the INCAR app. These are departure and destination addresses, departure time, arrival time, modes of transport to be considered, and chosen optimization criteria (duration, costs, CO_2 emissions). Multiple routing results are returned by the service based on chosen parameters and ordered by optimization criteria. A corresponding geocoding subservice translates departure and destination addresses into geocoordinates for the routing or uses current GPS location as a starting point for the route. If the user clicks on one of the suggested routes, he or she will see detailed instructions in a directions list view as well as in the map view of the INCAR app.

USER-CH

With this set of functionalities, EV drivers will have transparent access for using the EV charging infrastructure of CPOs integrated into the platform, regardless of whether the EMSP of the user offers an application with such functionality.

It is important to note that interoperability and roaming issues will be executed by means of the OCPI 2.2 protocol implementation. This protocol version defines how the market role called Hub (in this case INCAR interoperability and roaming services) would act as a communication intermediary between different EMSPs and CPOs. If there was not any platform that could centralise communications between the different actors involved in the charging process, it shall be necessary to manage a high number of connections and develop several end-user applications, as it is shown in the Figure 19 below.

Figure 19 INCAR Platform. Source: Martin et al. 2020

The Hub can be considered the main entity to be developed regarding roaming services as it is specifically conceived to centralise and facilitate connections between EMSPs and CPOs. However, its functionalities are not just limited to solve interoperability issues. All related services such as accounting, routing or electromobility dashboards are based on the information provided and reported to EMSPs and CPOs, therefore the platform Hub is intended to participate as a main actor in the whole set of INCAR services. Besides, it will have an essential role in the smart charging operations. The reason is that a set of smart charging inputs that are needed by the product SMAC to calculate the optimal charging profile will be informed by the Hub, and once this charging profile is defined, it will be reported to CPOs system by the Hub.

• COMMUNICATION PROTOCOLS FOR INCAR

With the implementation of OCPI 2.2 protocol, every time any partner involved in the platform (EMSPs and CPOs) would perform any update in the electromobility elements status, INCAR platform will be notified. Immediately, the interoperability and roaming component, which manages the received information, will store this information in the system database.

From specific data included in the EMSP/CPO request, the interoperability service will be notified about if the requesting system wants to send this updated information to the whole set of platforms involved in INCAR, or just to a single partner, and the backend service will redirect the information according to this data. The EV driver app can be considered the end-user device for this service. Their graphic user interfaces will display the information managed by the roaming component such as the EVSEs data (location, availability, etc.). Beyond offering the electromobility elements information, the driver app will perform any of the operations that are conceived in charging scenarios, like booking charging points, cancel reservations, and start or stop charging transactions. For this set of functionalities offered to the final user, it would be necessary communication between roaming services and mobile app backend.

ACCOUNTING SERVICES PROVIDED BY INCAR

Since INCAR platform end-users are costumers of the EMPSs, the responsibility of the billing of each charging transaction corresponds to the EMSP, according to tariffs and contractual conditions of the customers. Meanwhile, CPOs shall manage the direct interaction with the EVSEs infrastructure for the charging of the vehicles and shall periodically generate an invoice to the EMPSs with the aggregation of the costs of the charging transactions in the period. INCAR will centralize and redirect information between EMSPs and CPOs, including billing data generated by CPOs. Nevertheless, when the platform would be notified about an end of charging transaction, the relevant accounting data will not just be redirected from CPO to EMSP. It also will be stored by INCAR accounting service safely by means of BigchainDB technology¹⁵⁸. Although this service will not participate directly in the payment process, any EMSP and CPO will be able to search the billing information of the transactions which their customers have participated (for EMSPs) and which their EVSEs have performed the EV charging (for CPOs).

The accounting services will interact with the EV driver app, the accounting web and the interoperability and roaming services. With the mobile app, each user could get the billing information of their own ended transactions. The accounting web will let the partners who joined to INCAR platform (EMSPs and CPOs) to search the accounting data of the whole set of charging transactions which have performed (for CPOs) or which their customers have participated (for EMSPs). The accounting service will be fed by the charge detail records (CDRs) which is the only

¹⁵⁸ Kumar 2019

126

D1.3: Technical and legal requirements for USER-CHI solutions

billing-relevant object defined in OCPI protocol. Data which conforms CDR object will be created by CPO and sent to INCAR backend, where will be processed and stored by means of this service in the BigchainDB instance.

AUTHENTICATION SERVICES

In many cases, EV drivers still need to have a contract with an EMSP if they want to use a charging service. Consequently, end-users of offered services are the customers of EMSPs which are involved in the INCAR platform. Once an EMSP would be registered on the platform, almost all services and processes related to the final user actions would be performed by INCAR instead of EMSP system. Despite, there is a relevant part of functionalities offered to the final user which both, EMSPs and INCAR backend would have to participate: authentication process. A graphic user interface of the mobile app will be a login form, with the aim of identifying the EV driver who will make use of INCAR services. The platform backend will not be able to run this process in an individual way because customers' information will be stored neither managed by INCAR, as some data is considered confidential. Storage and management tasks will be performed by the EMSP with which the EV driver has a contract. Due to the lack of relevant customers data such as credentials in INCAR systems, there will be necessary an authentication service which could validate and identify the final user while respecting their privacy. Authentication issues will be covered by a Keycloak server instance¹⁵⁹.

The authentication service in INCAR can be separated into two subcomponents: a graphic user interface (GUI) and the backend service. The EMSP operator will be the responsible to interact with the authentication service frontend. He/she will have an administrator account in order to manage their customers information. It will be necessary that, for each EV driver, the operator includes data required for interoperability operations such as the id OCPI token assigned to the user, as well as useful information for the customization of the driver app frontend. Once the information is stored in the authentication service backend, the authentication process could be performed using the EV driver app. A login form will be displayed where the final user will introduce their credentials. The mobile app will communicate with the authentication service backend to validate the username and password. If they are correct the application will show the EMSP operator introduced previously, such as user full name or OCPI token.

¹⁵⁹ available at: https://www.keycloak.org/docs/latest/server_admin

4.3.2 Legal Requirements for INCAR

4.3.2.1 Parking management (INCAR)

• BOOKING OF PARKING SPOTS ON PUBLIC ROADS FOR EVS FOR THE PURPOSE OF CHARGING¹⁶⁰

Table 68 Booking of parking spots on public roads for EVs for the purpose of charging

Barcelona	Berlin	Graz	Murcia	Turku
Barcelona, the privilege of booking parking spots in public urban spaces is not yet developed.	The booking of public parking spaces in front of charging points before its use is not possible on a local level in Berlin. The only privilege for EVs, is the possibility to park free of charge at charging points during the charging process.	In the city of Graz, the only privilege that exists for EVs is that parking fees can be waived.	The City of Murcia has reserved 50 parking spots for EVs, and the administration is monitoring their usage with sensors embedded in the ground and an app, which shows the occupancy or availability. Likewise, the public charging points of Murcia can be booked through an APP from the vendor (FENIE ENERGIA).	Information not yet reported.

¹⁶⁰ USER-CHI Legal Questionnaire Q. No.31

• EXEMPTIONS FROM OR REDUCTIONS OF PARKING FEES FOR EVS¹⁶¹

Table 69 Exemptions from or reductions of parking fees for EVs

Barcelona	Berlin	Graz	Murcia	Turku
In the Metropolitan Area of Barcelona there is a total exemption of parking fees in specific zones ('Zona blava', charging point not available). However, other parking facilities include no reductions or exemptions for EVs.	In accordance to § 3 (4) Nr. 4 - Electromobility Law (EmoG) exemptions for EVs can be made regarding parking fees on public streets or roads. However, EVs are only allowed to park free of charge at charging stations during the charging process, which applies Berlin wide. Other privileges have not been introduced yet.	In the City of Graz, the parking is free for EVs on public spaces for the upcoming two years (Status: December 2020).	In the city of Murcia parking is free for EVs in the controlled parking area of the municipality. Besides there is an agreement between the city council and the association of private car parks in Murcia. Based on this agreement, EV users can park free of charge for the duration of an hour.	In the city of Turku public charging spots are currently freed from parking fees.

¹⁶¹ USER-CHI Legal Questionnaire Q. No.32

• PRIVILEGES OF EVS WHICH ARE PART OF A CARSHARING FLEET¹⁶²

Table 70 Privileges of EVs which are part of a carsharing fleet

Barcelona	Berlin	Graz	Murcia	Turku
In the Metropolitan Area of	Regarding the city of Berlin, the	The city of Graz has not	In the city of Murcia, currently no	The city of Turku has
Barcelona, the question of granting	same privileges apply to shared	implemented national or local	carsharing companies are	implemented not national or
privileges to vehicles, which are	vehicles eligible under the	regulations on privileges for	operating.	local regulations on privileges
part of a carsharing fleet is under	Carsharing Law (CsgG) ¹⁶³ but in	carsharing fleets.		for carsharing fleets.
discussion.	this case they are not limited to			
	EVs.			

 ¹⁶² USER-CHI Legal Questionnaire Q. No.33
 ¹⁶³ available at: https://www.gesetze-im-internet.de/csgg/BJNR223000017.html, last accessed: 04.01.2021.

• RULES ON ENFORCEMENT OF ADMINISTRATIVE OFFENCES FOR PARKING AFTER CHARGING PROCESS IS FINISHED¹⁶⁴

Barcelona	Berlin	Graz	Murcia	Turku
In the city of Berlin applicable traffic signs indicate that only EVs are allowed to park on the parking space next to charging points. During the day (8 a.m. and 6 p.m.) the parking period is limited to maximum 4 hours. EV users are asked to use parking discs to indicate when the charging process was started. During the night (6 p.m. – 8 a.m.) there is no time restriction on how long the EVs are allowed to park. ¹⁶⁵	In the city of Berlin if, and how long EVs can park after the charging process is not regulated yet. In some municipalities EV are only allowed to park next to charging points if the charging cable is plugged in.	In the City of Graz, the parking time charging stations in public spaces is generally limited for up to three hours.	In the city of Murcia regulation on the enforcement of overdue parking next to charging infrastructure is not yet implemented. However, it will be included in the new urban mobility ordinance of Murcia soon.	In the City of Turku, the only enforcement measure is time- related and implemented after a certain duration is overdue.

Table 71 Rules on enforcement of administrative offences for parking after charging process is finished

¹⁶⁴ USER-CHI Legal Questionnaire Q. No.34
 ¹⁶⁵ SenUVK, Beschilderung von Ladestationen, 23.03.2020.

131 D1.3 Technical and legal requirements for USER-CHI solutions

4.3.2.2 Roaming platforms

In neither the German, the Finish, the Spanish nor the Austrian legal frameworks special legal requirements on the topic of roaming platforms exist, which are applicable for the charging process of EVs in Europe. However, European regulation already exists on the topic mobile communication. The framework was established through the Regulation (EU) 2012/531 for roaming on public mobile communication networks within the Union. The Regulation addresses the levying of roaming charges within the European Economic Area. Another Regulation, which has been issued on the topic of roaming, is the Regulation (EU) 2015/2120 of the European Parliament and of the Council of 25 November 2015 laying down measures concerning open internet access.

The topic of roaming regarding public communication networks or open internet access offers similarities to the topic of roaming in regard to charging processes of EVs in Europe. Lessons learned derive from e.g., the need for interoperability between parties, as well as financial barriers, and a culture of open management.¹⁶⁶ It is expected that a running e-roaming system in the EU would foster the deployment of EVs.¹⁶⁷

4.4 USER-CHI product specific general requirements: SMAC - Smart Charging Tool

4.4.1 Technical Requirements for SMAC

This section and the subsections below describe the technical requirements for the technical USER-CHI product SMAC.

4.4.1.1 Authorization and Authentication Methods

The information provided by the USER-CHI partners regarding the authorization and authentication methods was rather scarce. Nevertheless, the following authorization and authentication methods were reported.

German USER-CHI partners reported the following authentication methods. the 7 Byte UID version was reported as the Radio Frequency Identification (RFID) Card used in Berlin, whereas Bluetooth token authentication in Munich.

No Near-field communication (NFC) or Quick Response-Code (QR-Code) were reported from USER-CHI partners.

¹⁶⁶ Ferwerda et al, Advancing E-Roaming in Europe: Towards a Single "Language" for the European Charging Infrastructure, World Electric Vehicle Journal, 2018, p.7.

¹⁶⁷ Ferwerda et al, Advancing E-Roaming in Europe: Towards a Single "Language" for the European Charging Infrastructure, World Electric Vehicle Journal, 2018, p.12.

132

The Ad hoc payment by credit card or debit card was reported to be used by Spanisher USER-CHI partners.

4.4.2 Legal Requirements for SMAC

4.4.2.1 Legal requirements on the topic of V2G

• NATIONAL LAWS ON THE TOPIC OF V2G AND STATUS OF ITS PRACTICAL IMPLEMENTATION 168

Table 72 National laws on the topic of V2G and status of its practical implementation

Barcelona	Berlin	Graz	Murcia	Turku
The Spanish legal framework does	The German legal framework	Information not yet reported.	The Spanish legal framework	The finish national legal
not include regulations on the topic	has established first steps for		does not include regulations on	framework does not include
of V2G so far. However, V2G	the national regulatory		the topic of V2G so far. However,	legislation regarding the topic of
application could be incorporated in	framework on V2G (§3 No. 25		V2G application could be	V2G. However, there are on
the coming regulation (updating the	EnWG defines charging points		incorporated in the coming	demand side
Law 24/2013).	as 'final users'; § 14 a EnWG		regulation (updating the Law	management/demand response
	includes EVs into the category of		24/2013). All the activities	markets that are maintained by
	controllable consumer devises).		around the V2G topic are mainly	the DSO (Fingrid). Moreover,
			located in the R & D field.	technical requirements must be
				reached to get into the market.

¹⁶⁸ USER-CHI Legal Questionnaire: Q. No. 51, Q. No. 52

• SEPARATION WITHIN THE NATIONAL SCHEME OF ELECTRICITY FED INTO THE GRID AND ELECTRICITY CONSUMED FROM THE GRID¹⁶⁹

Table 73 Separation within the national scheme of electricity fed into the grid and electricity consumed from the grid

Barcelona	Berlin	Graz	Murcia	Turku
This scheme has been introduced	§ 18 Ordinance on Charges for	Information not yet reported.	Same as Barcelona	Information not yet reported.
recently in the Spanish national	Access to Electricity Supply			
electricity market by the Royal	Networks (StromNEV) ¹⁷⁰			
Decree-Law 15/2018 and the	includes the possibility of			
Royal Decree-Law 23/2020,	charges for the operator of			
especially for domestic photovoltaic	decentralized energy plants,			
production.	which arise due to the feed-in of			
	electricity and have to be paid			
	by the distribution network			
	operator under certain			
	conditions.			

 ¹⁶⁹ USER-CHI Legal Questionnaire: Q. No. 53
 ¹⁷⁰ available at: https://www.gesetze-im-internet.de/stromnev/, last accessed: 04.01.2021.

4.5 USER-CHI product specific general requirements: INDUCAR - Inductive charging for e-Cars

4.5.1 Technical Requirements for INDUCAR

This section and the subsections below describe the technical requirements for INDUCAR.

The wireless charging of EVs is a user-centred requirement with the aim of making the use of EVs as comfortable as possible. The challenges for implementation are high. The installation space in the electric vehicle that can be considered for a wireless charging system is limited and the different vehicle types have very different ground clearances, which also depend on the loading condition of the vehicle. The electro-magnetic energy transfer is only reliable and efficient if the two corresponding inductors are optimally located in relation to each other. The Figure 20 shows the sequence specified in the IEC 61980-2 standard from the approach of the vehicle to the fine positioning above the infrastructure-side charging device and the subsequent control of the energy transmission.

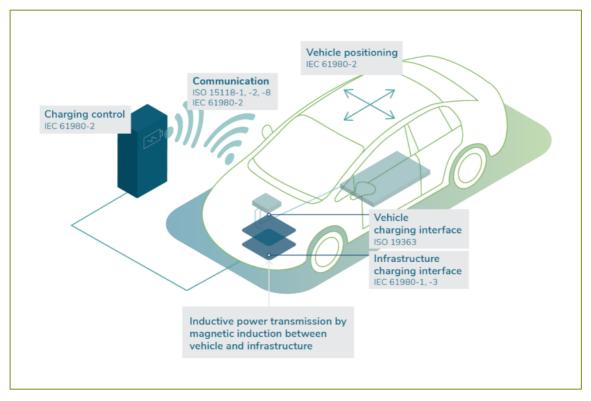


Figure 20 Wireless charging of EVs. Source: NPE 2017: 32

4.5.1.1 Safety and operation for wireless charging, electro-magnetic compatibility (EMC) and magnetic field emissions

Italian and German USER-CHI partners reported technical requirements for safety and operation for wireless charging, electro-magnetic compatibility (EMC) and magnetic field emissions. For this typology of sources, the Italian normative framework aiming to protect the general public against established adverse health effects that may result because of exposure to electro-magnetic fields (0 Hz - 300 GHz), follows the Council Recommendation 1999/519/EC and IEC TS 62764-1¹⁷¹. On the other hand, the E DIN EN IEC 61980-1 VDE 0122-10-1:2020-11 Electric vehicle wireless power transfer (WPT) systems¹⁷²; DIN EN 50364:2002-05, VDE 0848-364:2002-05¹⁷³; DIN EN IEC 61000-6-1:2019-11, VDE 0839-6-1:2019-11¹⁷⁴; and the SAE J2954-Standards, Norm SAE J2847/6¹⁷⁵ should be considered in Germany.

4.5.1.2 Testing of hardware/charging Infrastructure - Electro-magnetic Compatibility (EMC)

The Table 74 below provides an overview on the international standards for EMC. Italian USER-CHI partner reported IEC 61851-21-2:2018 Electric vehicle conductive charging system - Part 21-2: Electric vehicle requirements for conductive connection to an AC/DC supply - EMC requirements for off board electric vehicle charging systems¹⁷⁶, and the Directive 2014/30/EU¹⁷⁷ on the harmonisation of the laws of the Member States relating to EMC as the main requirements in Italy. German USER-CHI partners, on the other hand, reported the DIN EN IEC 61000-6-1 VDE 0839-6-1:2019-11¹⁷⁸ as the main requirement for EMC in Germany.

¹⁷¹ available at: IEC TS 62764-1:2019 - IEC-Normen - VDE VERLAG (vde-verlag.de)

¹⁷² available at: <u>E DIN EN IEC 61980-1 VDE 0122-10-1:2020-11 - Standards - VDE Publishing House (vde-verlag.de)</u>

¹⁷³ available at: DIN EN 50364 VDE 0848-364:2002-05 - Normen - VDE VERLAG (vde-verlag.de)

¹⁷⁴ available at: <u>DIN EN IEC 61000-6-1 (VDE 0839-6-1):2019-11 (dke.de)</u>

¹⁷⁵ available at: Induktive Ladesysteme: Interoperalität und Validierung von SAE TIR J2954 - electrive.net

¹⁷⁶ available at: <u>IEC 61851-21-2:2018 | IEC Webstore</u>

¹⁷⁷ available at: <u>EUR-Lex - 32014L0030 - EN - EUR-Lex (europa.eu)</u>

¹⁷⁸ available at: DIN EN IEC 61000-6-1 VDE 0839-6-1:2019-11 - Standards - VDE Publishing House (vde-verlag.de)

Requirements		Standard	Description
Electro-magnetic (EMC)	compatibility	IEC 61851-21-1:2017 ¹⁷⁹	Electric vehicle conductive charging system - Part 21-1 Electric vehicle on-board charger EMC requirements for conductive connection to AC/DC supply
		IEC 61851-21-2:2018 ¹⁸⁰	Electric vehicle conductive charging system - Part 21-2: Electric vehicle requirements for conductive connection to an AC/DC supply - EMC requirements for off board electric vehicle charging systems

Table 74 EMC requirements. Source: NPE 2017: 16

Moreover, Varro reported further national requirements that charging stations must meet for interference emission in residential areas and interference resistance in commercial areas in Germany¹⁸¹, namely:

- DIN EN 61000-6-1 (VDE 0839-6-1):2007-10 Electro-magnetic compatibility (EMC)
 Part 6-1: Generic standards Immunity for residential, commercial, and lightindustrial environments (IEC 61000-6-1:2005); German version EN 61000-6-1:2007
- DIN EN 61000-6-3 (VDE 0839-6-3) Electro-magnetic compatibility (EMC) Part 6-3: Generic standards - Emission standard for residential, commercial, and lightindustrial environments (IEC 61000-6-3); German version EN 61000-6-3

4.5.2 Legal Requirements for INDUCAR

NATIONAL REGULATION IMPLEMENTED ON THE TOPIC OF INDUCTIVE CHARGING ¹⁸²

In neither the German, the Spanish, the Finnish nor the Austrian legal framework special provision on the topic of inductive charging are yet applied. Within the Spanish legislation framework, the topic of inductive charging is a research and development activity.

¹⁷⁹ available at <u>IEC 61851-21-1:2017 | IEC Webstore</u>

¹⁸⁰ available at: <u>IEC 61851-21-2:2018 | IEC Webstore</u>

¹⁸¹ Varro 2013

¹⁸² USER-CHI Legal Questionnaire Q. No. 57

4.6 USER-CHI product specific general requirements: INSOC - Integrated Solar DC-Charging for LEVs

4.6.1 Technical Requirements for INSOC

The technical requirements for INSOC consider the following aspects, but are not available yet:

- ENERGY SUPPLY FOR LEVS CHARGING BOX PHOTOVOLTAIC (PV) SYSTEMS
- TECHNICAL REQUIREMENTS OF THE GRID OPERATOR AND METERING DEVICE OPERATOR
- ENERGY STORAGE
- LOCATION OF LEVS CHARGING INFRASTRUCTURE
- TECHNICAL CONNECTION RULES
- GRID CONNECTION, PROVISION OF THE GRID CONNECTION AND COMMISSIONING
- SUPPLY OF ELECTRIC ENERGY FOR ELECTRIC VEHICLES (EVS) CHARGING INFRASTRUCTURE
- PRODUCT STANDARDS AND ELECTRICAL SAFETY
- CHARGING PLUG COMPONENTS FOR LEVS CHARGING
- HARDWARE REQUIREMENTS FOR INSTALLED LEVS CHARGING BOX
- SAFETY AND STANDARD-COMPLIANT DESIGN OF THE LEVS CHARGING BOX (BOX ENVELOPE, PV MODULE)
- TESTING OF THE LEV BOX HARDWARE COMPONENTS
- BOOKING & BILLING
- COMMUNICATION PROTOCOLS
- AUTHORIZATION AND AUTHENTICATION METHODS
- TECHNICAL RECORDS AND DOCUMENTATION

4.6.2 Legal Requirements for INSOC

4.6.2.1 Building and construction law

• PERMISSIONS REQUIRED FOR THE INSTALLATION OF A PHOTOVOLTAIC SYSTEM BY NATIONAL BUILDING AND CONSTRUCTION LAW REGARDING SPECIFIC SIZES OF CONSTRUCTIONS¹⁸³

Table 75 Permissions required for the installation of a PV system by national building and construction law regarding specific sizes of constructions

Barcelona	Berlin	Graz	Murcia	Turku
The photovoltaic installations	Building permits are not needed	Information not yet reported.	Information not yet reported.	A construction permit is
without grid connection, or with	for the installation of			requested if the solar panels are
grid connection, with a maximum	photovoltaic systems (PV			not installed on rooftops.
capacity of 15 kW, do not require	systems) on top of buildings in			Moreover, industrial size plants
permissions in urban areas.	the city of Berlin. On the other			are subject to other
Otherwise, the permissions needed	hand, PV systems which are			requirements.
are identified in: 'Real Decreto-ley	independent from buildings and			
the Royal Decree-Law 15/2018'	taller than 3 meters or longer			
and in the 'Real DecretoRoyal	than 9 meters, need a building			
Decree 244/2019'.2019. The	permission.			
modifications included in the 'Real	ground-mounted systems) with			
Decreto-leyRoyal Decree-Law	a height of more than 3 meters			
23/2020' and the former legislation	a height of more than 5 meters			

¹⁸³ USER-CHI Legal Questionnaire: Q. No. 58

Barcelona	Berlin	Graz	Murcia	Turku
'Real Decreto-LeyRoyal Decree- Law 1955/2000' should also be considered.	and a length of more than 9 meters need a building permit.			
Florence: the installation of PV system	ms is regulated by the landscape pro	otection law, which is a law of the r	national level, on 60% of its territory.	Florence: The installation of PV

Florence: the installation of PV systems is regulated by the landscape protection law, which is a law of the national level, on 60% of its territory. Florence: The installation of PV systems is regulated by the landscape protection law, which is a law of the national level. This implies that a permission is required from the Cultural Heritage Superintendence (Sovrintendenza ai Beni Culturali) for the LEV box including the PV systems. At local level, urban plans define different zones of the city, where different regulations are in force. All the above-mentioned rules arise from the local planning regulations of the Municipality of Florence (Regolamento Urbanistico del Comune di Firenze).

• INSTALLATION OF PV SYSTEMS FOR LEV CHARGING STATIONS IN URBAN AND RURAL AREAS¹⁸⁴

Table 76 Installation of PV systems for LEV charging stations in urban and rural areas

Barcelona	Berlin	Graz	Murcia	Turku
If the installation takes place in a private space in a within the city of Barcelona, the requirements will be the same as explained in question 57. But if the installation takes place a public space, the previous permission from the Town Hall is mandatory.	The differences regarding the German legal framework on road use arise between installation on public and private space. For the installation in Berlin on public ground a special use permit from the road traffic authority is needed in accordance to §11 (1) Berlin Street Law (BerlStrG). Furthermore, in regard to INSOC a building permit might be needed for the LEV boxes, where the PV systems will be installed on the roof. However, the exemption of § 61 (1) No. 1 b) BauOBIn might be applicable for the container-boxes of INSOC. For structural facilities (§ 2 (1) 2 Building Code Berlin (BauOBIn) building permits are	Information not yet reported.	Information not yet reported.	Information not yet reported.

¹⁸⁴ USER-CHI Legal Questionnaire: Q. No. 59

142 D1.3: Technical and legal requirements for USER-CHI solutions

Barcelona	Berlin	Graz	Murcia	Turku
	needed in accordance to § (1) 59 BauOBIn. However, § 61 (1) No. 1 b) BauOBIn states that covered parking spaces for bicycles, each as well as their storage rooms with an average wall height of up to 3 m per wall and a gross floor area of up to			
	30 m ² , do neither need a building permit nor does an obligation to notify the building authority arise. This exemption might be applicable for the container-boxes of INSOC.			

• REQUIREMENTS FOR THE CONSTRUCTION OF PV SYSTEMS REGARDING FIRE PROTECTION PROVISIONS¹⁸⁵

Table 77 Requirements for PV systems regarding fire protection provisions

Barcelona	Berlin	Graz	Murcia	Turku
In the Spanish legal framework, the requirements for the installation of PV systems regarding fire protection provisions are set at the national level by the Royal Decree 842/2002 which enacts the Electrotechnical regulation for low voltage (Reglamento electrotécnico para baja tension or REBT ¹⁸⁶). At the local level, the requirements derive from the REBT in the technical regulation ITC-BT 40.	TheRegarding the German legal framework, the requirements for the design of PV systems regarding fire protection provisions depend on the type of buildings or use of special buildings. These requirements are specified within the BauO Bln.	Information not yet reported.	Same as Barcelona.	In the city of Turku, the requirements for the installation of PV systems regarding fire protection provisions are considered as regular electrical requirements. Moreover, breakers and other additional requirements are needed.

¹⁸⁵ USER-CHI Legal Questionnaire: Q. No. 60

¹⁸⁶ Royal decree 842/2002 – Electrotechnical regulation for low voltage (REBT, Reglamento electrotécnico para baja tension), (available at: https://www.hylaw.eu/database/national-legislation/spain/royal-decree-842-2002-electrotechnical-regulation-for-low-voltage-rebt-reglamento-electrotcn, last accessed: 04.01.2021).

144 D1.3: Technical and legal requirements for USER-CHI solutions

4.6.2.2 Energy Law

• RIGHTS AND DUTIES ARISING FOR ELECTRICITY GENERATORS AND SUPPLIERS UNDER THE APPLICABLE NATIONAL ENERGY LAW¹⁸⁷

Table 78 Rights and duties for electricity generators and suppliers under national energy law

Barcelona	Berlin	Graz	Murcia	Turku
No rights and duties arise if the	The obligations for the operation of PV	Information not yet reported.	Information not yet reported.	Information not yet reported.
PV system is not connected to	systems under the German energy law			
the grid. In case the photovoltaic	framework are spread across a high number			
generator plant is connected to	of regulations in the Energy Industry Act			
the grid and has a power up to	(EnWG), Renewable Energy Sources Act			
15 kW, the 'Real Decreto-	(EEG),) ¹⁸⁸ and the Electricity Tax Law			
leyRoyal Decree-Law 15/2018'	(StromStG), as well Electricity Tax			
and 'Real DecretoRoyal Decree	Ordinance (StromStV). (StromStV) ¹⁸⁹ and			
244/2019' should be considered	can be roughly divided into:			
for rights and duties.				

- ¹⁸⁸ available at: https://www.gesetze-im-internet.de/eeg_2014/, last accessed: 04.01.2020.
- ¹⁸⁹ available at: http://www.gesetze-im-internet.de/stromstv/, last accessed: 04.01.2020.

¹⁸⁷ USER-CHI Legal Questionnaire: Q. No. 62

4.6.2.3 Legal framework regulating road use

• PERMISSIONS WHICH ARE REQUIRED BY NATIONAL ROAD USE LAW IN ORDER TO SET UP A LEV BOX ON PUBLIC GROUND¹⁹⁰

Table 79 Permissions which are required by national road use law in order to set up a LEV box on public ground

Barcelona	Berlin	Graz	Murcia	Turku
The permission from the national	Setting up a LEV box in public spaces falls	Information not yet reported.	Information not yet reported.	Information not yet reported.
or regional administration would	fall under the category of special use in			
be mandatory, if the set up	accordance to § The § 11 (1) Berlin Street			
would take place in rural roads,	Law (BerlStrG). Therefore, a special use			
outside from the urban area. On	permit would be needed from one of the			
the other hand, if the set up will	twelve civil engineering offices of the			
take place in urban streets the	districts of Berlin.			
permission from the local				
administration (Town Hall) (See				
question 61) will be needed.				

¹⁹⁰ USER-CHI Legal Questionnaire: Q. No. 63

• PRESERVATION OF HISTORICAL MONUMENTS IN FORCE OPPOSING THE CONSTRUCTION OF A "LEV BOX" AND A PHOTOVOLTAIC SYSTEM FOR LEV CHARGING STATIONS ¹⁹¹

Table 80 Preservation of historical monuments in force opposing the construction of a "LEV box" and a photovoltaic system for LEV charging stations

Barcelona	Berlin	Graz	Murcia	Turku
In the Spanish context, local provisions differ from city to city. In Barcelona there are no provisions in place, which are related to the preservation of historical monuments only. In each municipality, there are several restrictions about visual impact, accessibility, and safety for pedestrian amongst others.	In the German context, § 10 (1) Law for the protection of historic monuments in Berlin (DSchG Bln) needs to be considered. This regulationIn accordance with § 10 (1) DSchG Bln: The immediate surroundings of a monument, as far as they are of formative importance for its appearance, may not be changed in such a way that the character and the appearance of the monument are substantially impaired by the construction or alteration of structural facilities, by the design of undeveloped public and private areas or in any other way. These requirements might influence appearance requirements for LEV boxes on publics pace.	Information not yet reported.	In Murcia there are protected buildings and public spaces where the construction of a "LEV box" and a PV system for LEV charging stations would need a special authorisation. Nevertheless, most of the public urban space should be evaluated to install such facilities.	Information not yet reported.

¹⁹¹ USER-CHI Legal Questionnaire: Q. No. 64

Parcolona		<u>^</u>	NA .	
Barcelona	Berlin	Graz	Murcia	lurku

Florence: A permission is either needed or strongly recommended permission is needed (or when not needed is strongly recommended Protection Authority (Soprintendenza per i beni architettonici e paesaggistici), if the box is located inside an area protected by cultural heritage regulation.

5.Specific Requirements for USER-CHI solutions

As described in Section 3.3, the requirements have been classified in groups based on the product they refer to; thus, there is one group of requirements for CLICK, INFRA, INSOC, INDUCAR and EMOBEST and two groups of requirements for INCAR and SMAC (see Figure 3).

According to the approach presented in Section 3.1 and the Volere methodology described in Section 3.3.2, the specific requirements for the USER-CHI solutions have been defined. This activity has been performed in a cooperative way among the different members of the consortium. It should also be noted that these specific requirements will serve as an input to define the product Use Cases (UC), while at the same time are inputs for the Usage Scenarios that are described in the deliverable 1.2 of WP1.

The lists of requirements presented in this Section are the result of the three iterations performed following the Volere methodology and built on the foundations of the General defined in Section 4.

5.1 CLICK product

This chapter describes the Specific Requirements for the technical USER-CHI product CLICK introduced by the partners through the Volere tool.

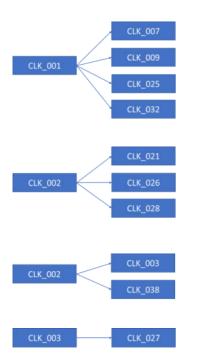
5.1.1 Overview

As stated in the DoA, CLICK is the USER-CHI product for supporting administrators within the process of top-down location planning for charging infrastructure in cities and the TEN-T corridors. CLICK consists of a question-and-answer online tool considering user's needs and habits in regard of charging technologies. The results generated by CLICK will address exact proposed locations, preferred technologies as well as the number of charging points needed, amongst other factors. Moreover, CLICK will enable a post-planning monitoring process by offering interfaces to be fed with actual utilisation of data of electric vehicle supply equipment (EVSE). This will trigger the demand-oriented expansion of the charging infrastructure network.

Figure 21: CLICK product icon

The General Requirements for CLICK have been obtained by the research study and the questionnaires were described in section 4.2. As a summary, the most relevant ones are:

- CLICK must have a web-frontend for interaction with the urban planner. The frontend should incorporate:
 - A map interface implemented by standard solutions (e.g., leaflet based on OpenStreetMap) for the user interaction with the tool.
 - A public and a private area, where the publicly accessible area will contain basic information and the access restricted area will contain the planning process.
 - A specific design to be used from within a professional environment, with a desktop equipment setup.
- CLICK must have backend that runs the calculations for the planning process and derive the recommendations for their charging infrastructure development.
 - CLICK backend must support the storage of results and inputs. The user must be able to save his planning process and results at specific stages of the process. A reprocessing of calculations should be possible. Therefore, a database should be used.
 - CLICK results should be made available to the user via the web interface. A provision of the results in file format for export (e.g., csv, xlsx) should be considered, a provision of the result in standard geo exchange formats (e.g., shape format) could be considered.

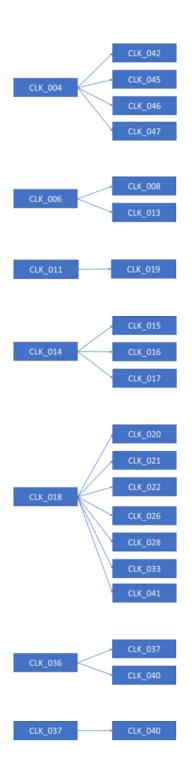

 CLICK could offer a monitoring functionality. Usage data of existing charging points should be importable to CLICK via a file-based transfer (comma separated csv file). CLICK could implement an interface to INCAR to receive actual usage data and could implement interfaces to other existing platforms (e. g. Hubject).

5.1.2 Figures of the Validation and Revision process

5.1.2.1 Dependencies

During the three iterations of the Volere methodology carried out in USER-CHI, a total of 12 dependencies among the CLICK requirements were identified by the validators.

Most of them helped to identify different requirements that were referred to the same content and, in addition, to identify if some of them could be merged. The dependencies and main comments provided by the validators are shown in the Figure 22.


"Five requirements are related to the scope of the product, the facilities which are related to and the main outputs"

"All these requirements are related to the need of accurate information about movement patterns hour to hour"

"Data basis for CLICK product must be based on various type of inputs (mobile GPS, building information, open data from maps of city...)"

"CLK 27 has a high dependency on information provided by the grid operators"

"All of them are related to the legal constraints for installing charging points at different levels: European, national, regional and local"

"These requirements could be merged in only one about the usability and humanity performance for CLICK tool"

"These requirements could be merged in only one about the usability and humanity performance for CLICK tool"

"This set of requirements propose several functional steps for CLICK, and are related to urban data."

"As CLK_020 explain, a detailed description of CLICK output (maps and tables) is required: location, power, demand (present and future), demand components (private, commercial...), cost of installation, formats... per charging point and in global (network). The eight requirements could be merged in two or three related to the CLICK output."

"Consider to merge these three requirements about forecast"

"Both requirements are related to include estimations of future population change"

"Both requirements are related to consider the already existing plans of the city"

Figure 22: CLICK Product. Dependencies identified during the requirement definition process.

5.1.2.2 Conflicts

With regards to CLICK products, only one conflict was detected during the requirement definition process, as it is shown in .

Figure 23: CLICK Product. Conflict identified during the requirement definition process

The conflict between CLK_039 and CLK_043 was raised because it was not clear if the word "plans" in both requirements referred to the same concept. It was solved pointing the difference between plans for charging infrastructure development and SUMPs.

5.1.2.3 Objections

During this process, also four Objections were raised regarding to the CLICK product, as it is shown in Figure 24.

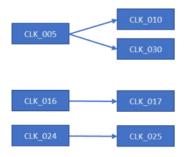


Figure 24 CLICK Product. Objections identified during the requirement definition process "To make interfaces with some private CPO or EMSP can be difficult for CLICK. I suggest to declare data from the existing charging points as a second level input for CLICK."

"Other data must be also included: legal, existing charging points, new plans, grid availability..."

"It will depend on the information the cities are providing, however cities could be reluctant to share the information with external companies such as housing companies or CPOs"

"Some aspects such as monumental protection of historic buildings could help planners to choose between locations"

"Other data must be also included: legal, existing charging points, new plans, grid availability..."

"It will depend on the information the cities are providing, however cities could be reluctant to share the information with external companies such as housing companies or CPOs"

5.1.1 Final list of requirements

After the three iterations of identifying and solving issues from the preliminary requirement list introduced in Volere Tool, the final list of requirements have been obtained. An overview of all CLICK requirements provided by the consortium can be found in Table 81:

Table 81: Summary of CLICK specific requirements

ID	Description	Туре
CLK_001	CLICK should support the Planning Process of Charging Infrastructure	The purpose of the product
CLK_002	A feasible location search and location optimization must be based on detailed information: Building structure, type of area, parking pressure, #of registered vehicles, movements per day (ideally on basis of cell phones), means of mobility,	Functional and data requirements
CLK_003	Data availability should be supported by cities, access to city information should be granted free of charge	Functional and data requirements
CLK_004	National regulations should be included	Functional and data requirements
CLK_005	Al learning integration: Lessons learned on certain locations (type of area, type of street, traffic, etc.) should be shared and an Al function should make best guess based on those learnings	Functional and data requirements
CLK_006	CLICK should be a question-and-answer online tool that current usability requirements to guide the user through the planning process.	Look and feel requirements
CLK_007	The focused user of CLICK should be an urban planner.	Users of the product
CLK_009	CLICK must follow a top-down-approach.	The scope of the product
CLK_010	CLICK could implement interfaces to charging station backends in order to retrieve usage data for monitoring functionalities	Functional and data requirements
CLK_011	CLICK must have a multi-step planning functionality	Functional and data requirements
CLK_012	CLICK could have a Monitoring functionality	Functional and data requirements

154 D1 3: Toch	aical and logal requirements for LISED. CHI colutions	IISER-CHI
CLK_014	nical and legal requirements for USER-CHI solutions CLICK should gather information about the goals and targets of the cities in the first step	Functional and data requirements
CLK_015	CLICK should gather basic information about the city (e.g. population, size etc.) in the second step	Functional and data requirements
CLK_016	CLICK should gather information about the city structure in the third step	Functional and data requirements
CLK_017	CLICK should gather city structure information in the fourth step	Functional and data requirements
CLK_018	CLICK should give a recommendation on charging station placement within areas after completion of data input	Functional and data requirements
CLK_019	CLICK should provide an option to change inputs and recalculate the recommendation	Functional and data requirements
CLK_020	CLICK results should be provided as a map and a basic data table	Functional and data requirements
CLK_021	CLICK must provide location-based forecasts of charging demands	The purpose of the product
CLK_022	CLICK should produce reliable statements for the business model of charging infrastructure	The scope of the work
CLK_024	CLICK should be designed to support housing companies in the planning process of charging infrastructure	Users of the product
CLK_025	CLICK should be designed to support charging operators in the planning process of charging infrastructure	Users of the product
CLK_026	CLICK should forecast how many charging processes per day can be expected at a certain location in the city	Performance requirements
CLK_027	Click should provide information on the availability of electrical power in the local grid	Functional and data requirements
CLK_028	CLICK should evaluate the frequency of site visits	Functional and data requirements
CLK_030	CLICK must display all charging points already in place	The scope of the product
CLK_031	CLICK should provide advice for dimensioning new charging stations (quantity vs power)	The scope of the product
CLK_032	CLICK should categorize the attractiveness of a planned charging infrastructure location based on the collected data	The scope of the product
CLK_033	CLICK could give a prospect of charging infrastructure demand for a certain time period ahead	The scope of the product

	5	5
	-	

155		ILCED_CUI
	nical and legal requirements for USER-CHI solutions	
CLK_034	CLICK could support information on time spent on hotspots (shops,	Functional and
	work), so information can be used to decide power of the charger	data requirements
CLK_035	CLICK should interconnect all forms of travel (busses, bikes, walking)	Functional and
		data requirements
CLK_036	Should support estimations of future EV population and calculate	Functional and
	needed charging infrastructure	data requirements
CLK_037	Should support estimations of future population change	Functional and
		data requirements
CLK_038	Easily use open access data	Functional and
		data requirements
CLK_039	Ability to add already existing/set future plans into CLICK	Functional and
		data requirements
CLK_040	Should support different simulation of predicting future population	Functional and
		data requirements
CLK 041	Click could differentiate between demand created by different users	The scope of the
021(_041	(private/commercial: fleet, freight transportation).	product
CLK_042	CLICK should take into account the permits needed for building	Legal
CLK_042	infrastructure in public spaces	requirements
		-
CLK_043	CLICK should take into account SUMP (Sustainable Urban Mobility Plans) of cities - if available	Cultural and political
		requirements
CLK_046	CLICK should consider requirements of public / stakeholder	Legal
CLK_040	participation in regard to infrastructure planning - if mandatory /	requirements
	existing	
CLK_047	CLICK should consider requirements deriving from national laws on	Legal
CLK_047	preservation of historical monuments	requirements
CLK_048	Click could provide information on the availability of fibre network	Functional and data requirements
		-
CLK_049	CLICK could use "Connection Time" or "Grid Connection Time" as one	Functional and
	dimension instead of or in combination with "charging time".	data requirements
CLK_050	CLICK should have a public and a private section, where the public	Functional and
	contains general information and the private (user restricted) holds the	data requirements
	actual planning process	
CLK_051	CLICK should use standard tools and components (e.g., leaflet)	Functional and
		data requirements

156 D1.3: Techi	USER-CH	
CLK_052	CLICK should have a storage functionality in order to pause and resume the process	Functional and data requirements
CLK_053	CLICK could consider other data as legal requirements, data from existing charging points, data about new plans, grid availability, fibre network availability	Functional and data requirements
CLK_054	CLICK could consider special user groups as e-taxi drivers, carsharing operators, commuters.	Functional and data requirements
CLK_055	CLICK should consider the suitability of the distribution grid for potential charging infrastructure locations as well as potential grid- side effects.	The scope of the product

5.2 INCAR product

5.2.1 Overview

INCAR is the USER-CHI product that allows barrier-free access to electric vehicle charging points along the TEN-T corridors and integrates innovative services for electric vehicle drivers.

INCAR is a user-centred roaming platform with integrated services for both operators and drivers of electric vehicles. INCAR will offer automated, transparent, and flexible payment and identification services to ensure barrier-free and operator-independent access to ultra-fast and slow charging for end users, while also offering services to maximize availability and accessibility to the EVSE, providing real-time information, reservation and routing services for electric vehicle drivers that will enhance their seamless experience with electric vehicle charging and daily parking activities. This will reduce the "charging anxiety" of the electric vehicle driver, one of the three main barriers for drivers to buy an electric car and improve the satisfaction level of electric vehicle drivers in relation to the charging process due to the elimination of current accessibility barriers. and the new services provided.

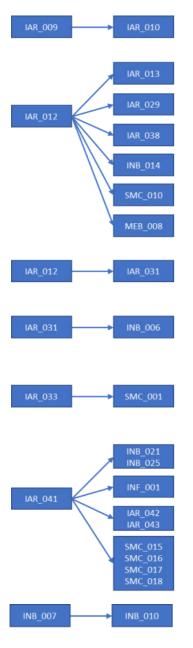
Figure 25 INCAR product icon

The General Requirements for INCAR have been obtained by the research study and the questionnaires were described in section 4.3. As a summary, the most relevant ones are:

- INCAR must have a mobile application for interaction with the end user (EV drivers). It should incorporate
 - A map interface for the user interaction with the app when finding or booking a charging station.
 - A wallet to allow the payment of the charging by the end-user.

- Routing services to guide the end-user to the selected charging point.
- Real-time information of the charging points status.
- INCAR must have a web frontend for interaction with charging point operator (CPO). It should incorporate
 - An interface to introduce a new CPO or EMSP into the INCAR platform.
 - An interface to allow the CPO to have access to their Charging Data Record (CDR) and payments.
- A backend that contains all the services provided by the INCAR platform, both for end-users and professionals. The INCAR backend should accomplish with the follow General Requirements:
 - INCAR backend must support the storage CDRs in a transparent and a secure way. The CPOs and EMSPs should have access to this information.
 - INCAR should manage the payments between the CPO and EMSP in an integrated and automatic way. The interaction and the information provided by the platform should be user friendly for the CPOs and EMSPs.
 - INCAR should be able to manage reservations through the INCAR app.
 - INCAR should be able to provide value added information to city planners.
 - INCAR should be able to manage the start and end of a charging session through the INCAR app.

5.2.2 Figures of the Validation and Revision process


5.2.2.1 Dependencies

During the three iterations of the Volere methodology carried out in USER-CHI, 5 dependencies were identified among the INCAR requirements and 3 more dependencies were identified by the validators among other USER-CHI products, INFRA and SMAC.

In the case of INCAR, most of the dependencies helped to identify links among the requirements that should be considered for different reasons. The main comments provided by the validators as well as the list of dependencies are shown in the Figure 26.

"Listing the nearest available EVSEs is only possible if the user gives permission to access GPS"

"To implement V2G it is necessary to have a planned time of arrival & departure for EV who are able to perform V2G. We should know in advance the available "time for charging. There is a strong dependency with INCAR backend and SMAC".

"INCAR can only provide information about whether a parking spot with charging infrastructure is free or occupied if authorized users are able to reserve/book an EVSE"

"INCAR could inform about availability if this information is reported from CPO to INCAR. If there is relevant information not covered in OCPI, it should be studied how could be reported to INCAR."

"Set charging preferences has sense when smart charging operations are available, in other words only if the charging point supports Smart Charging operations"

"This list of requirements depends on requirement INF_001 as legal and contractual aspects should be studied in INFRA".

"When a CPO creates a CDR or updates EVSEs status, CPO must send this information to INCAR/EMSPs. This is the general workflow"

Figure 26: INCAR Product. Dependencies identified during the requirements definition process

5.2.2.2 Conflicts

With regards to INCAR product, only one conflict was detected during the requirement definition process, as it is shown in Figure 27.

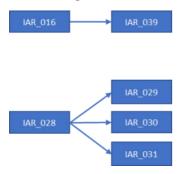

"The aim of INCAR is not to specify tariffs or costs. The associated cost of charging transactions is defined by CPOs and EMSPs"

Figure 27: INCAR Product. Conflict identified during the requirements definition process

The conflict between INB_048 and INB_049 was raised because it was not clear if the charging tariffs was decided by INCAR or by the CPOs. It was solved clarifying that INCAR will not take decisions about costs, which will be set by the different CPOs of the platform.

5.2.2.3 Objections

During this process, also four Objections were raised regarding to the CLICK product, as it is shown in Figure 28.

"We should define beforehand in which language(s) the app should be. (Suggestion: Language spoken in the demonstration city + English)"

"INCAR will communicate with charging points operators by means of standard OCPI. If there is a parking operator which requires communications with the INCAR platform that are not covered in OCPI, a proposal from the parking operator will be necessary"

Figure 28: INCAR Product. Objections identified during the requirements definition process

5.2.3 Final list of requirements

After the three iterations of identifying and solving issues from the preliminary requirement list introduced in Volere Tool, the final list of requirements have been obtained. An overview of all INCAR requirements provided by the consortium can be found in Table 82:

Table 82: Summary of INCAR specific requirements

ID	Description	Туре
IAR_001	INCAR should include information/connection to services provider dedicated to the EV users during the charging time	Usability and humanity requirements
IAR_002	Voice command of app	Functional and data requirements
IAR_003	INCAR app must be able to run under Android and iOS operating systems	Operational requirements
IAR_004	INCAR should allow users to give their instant feedback regarding specific charging experiences and the usage of the application itself.	Functional and data requirements
IAR_005	INCAR app must offer certain features and functionalities to authenticated users only	Security requirements
IAR_006	Personal data must not be stored in mobile application storage	Legal requirements
IAR_007	INCAR app users should be informed about application updates	Operational requirements
IAR_008	INCAR app must show INCAR EVSEs located in a map view	Functional and data requirements
IAR_009	INCAR app should list the nearest available EVSEs regarding the current position of the user	Functional and data requirements
IAR_010	INCAR app must ask users to grant permission to access mobile device GPS	Legal requirements
IAR_011	Current availability status of EVSEs should be represented in map view	Look and feel requirements
IAR_012	Authorized users must be able to reserve/book an EVSE	Functional and data requirements
IAR_013	Authorized users should be able to cancel an existing reservation of an EVSE	Functional and data requirements
IAR_014	EVSE information must include types of connector	Functional and data requirements
IAR_015	INCAR app should use project styles, fonts and colors	Look and feel requirements

T03

163		
	nical and legal requirements for USER-CHI solutions	
IAR_016	INCAR app must be available in English	Us ability were even wand humanity requirements
IAR_017	INCAR app should show charging tariffs for EVSE	Functional and data requirements
IAR_018	INCAR app must be connected to the internet	Mandated constraints
IAR_019	INCAR app must support the start and stop of a charging session	Functional and data requirements
IAR_020	INCAR app supports a European wide modal car routing	Functional and data requirements
IAR_021	INCAR app could support a multimodal routing for integrated pilot sites	Functional and data requirements
IAR_022	INCAR app could show charging transaction history in a list view	Functional and data requirements
IAR_023	INCAR app should be available 24/7 during pilot demonstration with a 96% availability	Operational requirements
IAR_024	INCAR app should allow to display different Points of Interest (POI) in map view	Functional and data requirements
IAR_025	INCAR app backend must implement OCPI 2.2 in order to communicate with INCAR backend	Functional and data requirements
IAR_026	INCAR app must have access to Identity and Access Management (IAM) system to confirm eMSP user credentials for authentication	Functional and data requirements
IAR_027	INCAR app should facilitate an end-user to interact with INCAR functionalities	The purpose of the product
IAR_028	INCAR must have an interface to parking facilities and must enable the reservation and digital payment of parking	The purpose of the product
IAR_029	INCAR should enable digital booking for long-term and short-term parking	The scope of the product
IAR_030	INCAR should provide geographic information about parking spots with charging infrastructure	Functional and data requirements
IAR_031	INCAR should provide information of whether a parking spot with charging infrastructure is free or occupied	Functional and data requirements
IAR_032	INCAR must have its own payment and accounting processes for authorized users	The scope of the product

164 D1.3: Tech	nical and legal requirements for USER-CHI solutions	USER-CH
IAR_033	INCAR app users must be allowed setting charging preferences of an ongoing charging session	Functional and data requirements
IAR_034	INCAR app should display the SoC (if technically available) of the cars during charging process	Functional and data requirements
IAR_035	INCAR must be developed to be a fully 'Managed Service'	The client, the customer and other stakeholders
IAR_036	Application should show estimated price and time for charging to specific charge	Functional and data requirements
IAR_037	Application should have high demand warning, when charging power is lowered due high demand	Functional and data requirements
IAR_038	Customer should be able to set estimated time of the charge, so power can be adjusted. (like overnight stay)	Functional and data requirements
IAR_039	Incar app must be multilingual	Usability and humanity requirements
IAR_040	Should show information of falsely blocked charging point to end user.	Functional and data requirements
IAR_041	INCAR should consider legal privileges for parking of EVs in cities - if available	Legal requirements
IAR_042	INCAR must take into account the concept of privacy by design based on the GDPR	Legal requirements
IAR_043	INCAR needs to consider national data protection laws	Legal requirements
IAR_045	INCAR should support car sharing	Operational requirements
IAR_046	INCAR should allow the users plan long range trips	The scope of the product
IAR_047	The app should show the user a step by step onboarding (introduction of features and usage).	Usability and humanity requirements
IAR_048	INCAR app should display settings to the user.	Functional and data requirements
INB_001	INCAR must implement OCPI 2.2 version	Operational requirements
INB_002	INCAR must manage, store and redirect charging transactions information	Functional and data requirements

165				
D1.3: Technical and legal requirements for USER-CHI solutions				
INB_003	Due to legal restrictions, INCAR must not store customer personal information	Legal requirements		
INB_004	INCAR backend must be able to interface with charging point operators (CPOs)	Operational requirements		
INB_005	INCAR backend must be able to interface with e-mobility service providers (EMSPs)	Operational requirements		
INB_006	EVSEs information (location, status, connector type, etc.) must be provided by CPOs to INCAR backend	Operational requirements		
INB_007	At the end of each charging session, the CPO must send the charging detail information to INCAR. The platform backend will redirect the data to the EMSP. This information contains all relevant data about the charging session	Operational requirements		
INB_008	The E-Mobility Dashboard must offer a map with the location and status of the elements of the electromobility in the city	Functional and data requirements		
INB_009	When the user clicks the representation of an element in the E- Mobility Dashboard, characteristics details and status of that element must be displayed	Functional and data requirements		
INB_010	CPOs must provide real-time information about EVSEs status to INCAR backend, which will offer this information to final users by means of driver app	Operational requirements		
INB_011	EMSPs must register their customers information in the platform identity provider	Operational requirements		
INB_012	CPOs platforms must implement OCPI 2.2 protocol version	Operational requirements		
INB_013	EMSPs platforms must implement OCPI 2.2 protocol version	Operational requirements		
INB_014	INCAR should provide information if the CPO is equipped for V2G service and at which condition	The client, the customer and other stakeholders		
INB_015	Tariff based on kWh and time	Functional and data requirements		
INB_016	Reservation function on location level with multiple CPs	The scope of the product		
INB_017	Blocking/ false parker information	The scope of the product		
INB_018	Reservation switch to another pole at same location or next location	The scope of the product		

166 D1 3: Toch	nical and logal requirements for LICED. CHL colutions	IISER-CH
INB 019	D1.3: Technical and legal requirements for USER-CHI solutions INB_019 INCAR backend must be able to interface with INCAR app backend	
		Functional and data requirements
INB_020	INCAR should include digital management of access authorizations	The scope of the product
INB_021	INCAR should follow the guidelines published by the Alliance for Parking Data Standards (APDS) to facilitate seamless integration for potential users	The client, the customer and other stakeholders
INB_022	The INCAR dashboards should show statistical information of the recharge operations	Functional and data requirements
INB_023	INCAR should be able to communicate with administration software such as SAP ERP and SAP IDP	Functional and data requirements
INB_024	INCAR must have its own payment and accounting processes for authorized users	The scope of the product
INB_025	It must be clear who holds the contracts with CPO/EMSP joining the INCAR platform	Open issues
INB_026	There must be a clear benefit for CPO/EMSP to be part of the INCAR platform	The purpose of the product
INB_027	Employing app utilities without subscription	Users of the product
INB_028	Two basic payment modalities: subscription and credit card	Users of the product
INB_029	User profile should include several cars description and several drivers&riders description	Users of the product
INB_030	Booking procedure must be reliable and include users' preferences (such as charging, planning, routing,)	Users of the product
INB_031	User must be able to manage its charge even in the case of failure in its connection to the internet. INCAR should consider the possibility that Internet connection falls down during the charging process	Users of the product
INB_032	The app could manage charging at home (in a private charger or public)	Users of the product
INB_033	App should include monitoring in real time utilities	Users of the product
INB_034	App could include a social network utility	Users of the product
INB_035	EMSPs-CPOs-DSOs should access to aggregated information to improve their services	The client, the customer and other stakeholders
INB_036	App could include booking options for additional services while charging	Users of the product
INB_037	App must route-book-pay	Users of the product

167		
D1.3: Tech	USER-CH	
INB_038	App to communicate sustainability	Users of the product
INB_039	App could provide customised information according to personal driving profile (autonomy, charges per week, charging time, kWh per km,)	Users of the product
INB_040	App should filter the CPs available according to the route and the user's preferences	Users of the product
INB_041	Wireless technology authenticates user when getting to the CP	Users of the product
INB_042	INCAR backend should be able to interface with parking detection sensors	Operational requirements
INB_043	Should support variable pricing, high and low demand times	Functional and data requirements
INB_044	Time reated payment. Charging can be kWh based, but after some time payment by minute starts. This should be allowed by the back end. (some places might have free parking on charging points, but we dont want that cars are occupying spots indefiniely)	Functional and data requirements
INB_045	Should have added value for existing similar back ends	The client, the customer and other stakeholders
INB_046	Possibility to charge parking and e-charging separately based and time and volume	Functional and data requirements
INB_047	Dashboard - real time access to see the current situation of loading in the city and previous trends	Functional and data requirements
INB_048	Backend - maintenance division scenario (if the charging point is not used, no costs should occur, as otherwise CPOs willingness to join is low)	The client, the customer and other stakeholders
INB_049	Tariffs information must be provided by CPOs	Operational requirements
INB_050	When other EMSPs are connecting to the hub via OCPI, the demand for all the functionalities needs to be optional.	Operational requirements
INB_051	INCAR Backend Must provide an interface to CLICK to provide Online and Historic usage data of charging points.	Functional and data requirements

5.3 SMAC product

5.3.1 Overview

As stated in the DoA, SMAC will provide smart grid integration services for slow, medium, fast and ultrafast charging, by allowing the dynamic management of the charging infrastructure. SMAC will allow minimising the grid impact associated to the implementation of charging infrastructure, optimising the power supplied to the EVSE while providing high-value services for citizens and cities, such as minimum charging prices and maximum RES electricity supply. In addition, SMAC will provide flexibility and stabilisation benefits to the DSOs, such as reduction of the grid impact of new charging infrastructure through demand management and the possibility to use EVs as dynamic distributed storage devices, by means of the V2G.

Prior to the development of SMAC tool, a detailed EV charging infrastructure models are being created to define the flexibility, control, and response capabilities to be integrated in the smart grid. Modelling activities will tackle all necessary components and will incorporate capacity and flexibility parameters for local grid optimization. On the other hand, this task will deliver algorithms and models for profiling of EV batteries and charging infrastructure for optimal charging and discharging actions.

When defining SMAC requirements, two groups have been defined, to also consider the requirements associated with modelling of EV batteries and charging solutions. The list of requirements and main figures of the process related to both groups are presented in this Section.

Figure 29: SMAC product icon

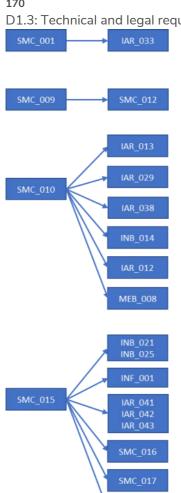
The General Requirements for SMAC have been obtained by the research study and the questionnaires were described in section 0. As a summary, the most relevant ones are:

- A web-frontend for interaction with the CPOs, in order to define the different inputs regarding the level of service and boundaries for performing the smart charging operations.
- A backend that runs the algorithms that calculate the optimal charging profile considering the boundary conditions and be able to be in constant communication with the charging point to send this data.

5.3.2 Figures of the Validation and Revision process

5.3.2.1 Dependencies

During the three iterations of the Volere methodology carried out in USER-CHI, a total of 8 dependencies were identified by the validators, 4 of them directly related to the SMAC tool and the other 4 linked to the task of modelling of EV batteries and charging solutions (MEB).


In the case of SMAC, some of the dependencies helped to point out links with the information provided by the EV drivers such as the "time available for charging", or technical requirements of the charging points for supporting Smart Charging operations. Others helped to identify dependencies with legal requirements or real data required to create the due models.

An overview of the main comments provided by the validators as well as the list of dependencies are shown in the Figure 30, Figure 31, and Figure 26.

170

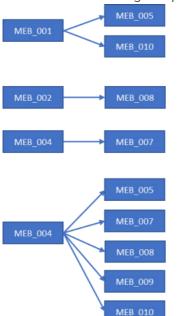
D1.3: Technical and legal requirements for USER of the solutions sense when

operations are available, in other words only if the charging supports Smart Charging operations"

"Advantages include a lower price for CPO and/or users"

"To implement V2G it is necessary to have a planned time of arrival & departure for EV who are able to perform V2G"

"There is a strong dependency among these features and V2G $\,$ could be implemented only if arrival and departure times are available with a good approximation."


"I agree on that dependency. However, parking time is not the main data source to use for V2G"

"I think we should start separating charging time from parking time"

"This list of requirements depends on requirement INF_001 as legal and contractual aspects should be studied in INFRA"

"This is the general question of whether we want to address specific legal requirements within each technical product or collect them within the legal layer of INFRA. The first approach is clearer and better manageable. Legal interoperability = INFRA."

Figure 30: SMAC product. Dependencies identified during the requirements definition process

"A meaningful benefit comparison is possible if we have real world data (from USER-CHI demo sites)"

"V2G needs long stay parking. V2G would be included considering parking time longer than 1 hour"

"In order to have meaningful results, one must know the actual charging profiles of each users type and the real charge demand"

"To let the INSOC UC realistic it's needed to involve the stakeholder: municipalities, local DSO and rental e-bike companies".

"Some information have been collected, but they are probably not enough to solve the initial problem for INSOC."

"MEB 007, 008 and 009, are not impacted by this DEP as those requirements were created from the EV charging stations perspective (not LEVs)

Figure 31: MEB task. Dependencies identified during the requirements definition process

5.3.2.2 Conflicts

No conflicts detected on the SMAC and MEB requirements.

5.3.2.3 Objections

No objections detected on the SMAC and MEB requirements.

5.3.3 Final list of requirements

After the three iterations of identifying and solving issues from the preliminary requirement list introduced in Volere Tool, the final list of requirements have been obtained. An overview of all SMAC requirements provided by the consortium can be found in Table 83**Table 81**:

Table 83: Summary of SMAC specific requirements

ID	Description	Туре
SMC_001	CPO platforms must implement OCPP 1.6 or 2.0 for smart charging operations	Operational requirements

172 D1 2: Tochni	cal and legal requirements for USER-CHI solutions	IISER-CH
SMC_002	From different smart charging inputs SMAC must calculate the optimal charging profile for a charging session. The calculated charging profile will be reported to CPOs, but it is responsibility of CPOs to execute smart charging operations	The durage of the the product
SMC_003	CPOs must implement OCPP 2.0 for V2G operations	Operational requirements
SMC_004	SMAC services will not be available for charging stations not involved in INCAR platform	Operational requirements
SMC_005	CPOs must inform if their EVSEs support smart charging operations	Operational requirements
SMC_006	EMSPs should inform about users default charging profile in order to consider it as smart charging input	Operational requirements
SMC_007	SMAC should specify a prioritization for the identified smart charging inputs	Operational requirements
SMC_008	CPOs should inform about locations restrictions such as the maximum power the EVSEs can provide	Operational requirements
SMC_009	Energy prices should be aspect of smart charging	The scope of the work
SMC_010	SMAC should implement Planned start-charging time for slow charges	The purpose of the product
SMC_011	SMAC must include an assessment of V2G impact on battery life	Operational requirements
SMC_012	SMAC should give an indication of the advantages of a smart charging operation vs generic charging operation (less electric load, charging costs, battery life prolongation,) to CPO and end user	Functional and data requirements
SMC_013	SMAC should list the technical necessities (or products) to make smart charging operations implementable.	Users of the product
SMC_014	SMAC must implement OCPI 2.2 modules related with Smart Charging Service Providers (SCSP)	Operational requirements
SMC_015	SMAC needs to consider interoperability requirements deriving from Art. 4 (4) AFI-Directive (compatibility with Type 2 power sockets)	Legal requirements
SMC_016	Requirements deriving from European / national calibration and measurement laws need to be taken into account for different billing models	Legal requirements
SMC_017	SMAC needs to enable ad-hoc charging processes, as required by Art. 4 (9) AFI-D	Legal requirements

173 D1.3: Techni	USER-CH	
SMC_018	SMAC should consider national regulation on the topic of V2G - if existing $% \mathcal{L}_{\mathcal{L}}^{(1)}(\mathcal{L}_{\mathcal{L}})$	Legal requirements
SMC_019	SMAC should work without INCAR	Operational requirements
SMC_020	SMAC must consider the DSO as possible demander of V2G operations.	The purpose of the product
SMC_021	Could include information on EV being charged/requesting to charge	Functional and data requirements

As introduced in section 5.2.1, a specific group of requirements for T4.1 Modelling of EV batteries and charging solutions have also been carried out. An overview of all SMAC requirements provided by the consortium can be found in Table 84:

ID	Description	Туре
MEB_001	Must include optimal sizing of a PV+EES+Charging infrastructure (on/off grid)	The scope of the work
MEB_002	Could include Charging infrastructure algorithms for long-stay parking	The scope of the work
MEB_003	Must give a tool to verify the feasibility of charging solution both from an investiment and operative point of views	The purpose of the product
MEB_004	Data on electric mobility and charging infrastructure usage	Functional and data requirements
MEB_005	Should data on solar radiation, available surface and PV characteristics for demo sites	Functional and data requirements
MEB_006	Must have data on new electric mobility modes	Functional and data requirements
MEB_007	The models of EV charging solutions should take into account different charging profiles VIP users, ECO users, Low-cost users)	Functional and data requirements
MEB_008	The models of EV charging solutions should take into account negative charging profiles (V2G)	Functional and data requirements
MEB_009	Charging infrastructure models must take into account the combination of different powers being supplied at the same time, considering a station with X charging points with different users demands and limited power availability	Functional and data requirements

174 D1.3: Techni	cal and legal requirements for USER-CHI solutions	USER-CHİ
MEB_010	MEB should include a benefit comparison (technical, monetary) between non-integrated charging infrastructure and optimized charging infrastructure	The ^{conscope} of the ⁷ product
MEB_011	Regarding EV charging infrastructure, there must be models for the energy supplied of one charging point and models for the energy supplied of the whole station (a set of charging points connected to the same point of the grid)	Functional and data requirements
MEB_012	MEB would include the study of the optimal power supplied by renewable sources and the capacity of batteries to be installed (i.e if EV charging station integrated with photovoltaic modules)	The scope of the product
MEB_013	MEB should consider both AC and DC charging powers available in the existing in the USER-CHI demo sites.	The scope of the work

5.4 INSOC product

5.4.1 Overview

As stated in the DoA, INSOC- Integrated Solar DC-Charging for LEVs is an easily replicable and scalable low-power charging station for LEVs and e-bike sharing services, with integrated theft-proof parking, payment services and on-site produced RES through DC-network interconnection. INSOC will consist of a software and hardware combined solution to solve charging needs of LEVs, integrating on-site production of renewable energy and theft-proof parking. It will also integrate payment and billing services, making it especially convenient for new urban mobility modes, such as e-bike and e-scooter sharing services.

Figure 32: INSOC product icon

The main features and general requirements of INSOC, which have been obtained by the research study and the questionnaires section 4.6 are:

- D1.3: Technical and legal requirements for USER-CHI solutions
 - INSOC should have a photovoltaic (PV) system to supply the renewable energy to the LEVs charging station.
 - INSOC should have Anti-theft system to improve the security and prevent from vandalism.
 - INSOC would have energy storage to improve the autonomy of system.
 - There should be a study of the most suitable location to install these kind of charging stations.
 - INSOC should consider the permits required by the public administrations to install charging stations and renewable energy production in public space.
 - INSOC should consider the contracts required by the DSO for the connection to the grid.
 - INSOC should meet general standards and laws.
 - INSOC should allow the booking and payment by the end-user.

5.4.2 Figures of the Validation and Revision process

5.4.2.1 Dependencies

No dependencies detected on the INSOC requirements during the Validation process.

5.4.2.2 Conflicts

No conflicts detected on the INSOC requirements during the Validation process.

5.4.2.3 Objections

No objections detected on the INSOC requirements during the Validation process.

5.4.3 Final list of requirements

After the three iterations of identifying and solving issues from the preliminary requirement list introduced in Volere Tool, the final list of requirements have been obtained. An overview of all INSOC requirements provided by the consortium can be found in Table 85**Table 81**:

1/0
D1.3: Technical and legal requirements for USER-CHI solutions
Table 85: Summary of the specific requirements of INSOC product

176

ID	Description	Туре
INS_001	Solar chargers must be secure parkings	Users of the product
INS_002	Solar charger station could be part of a modal hub	Users of the product
INS_003	The urban furniture as an existing infrastructure for hosting solar charging points (e.g., streetlights and benches)	Users of the product
INS_004	The use of INSOC facilities requries the use of an app (similar to INCAR)	The purpose of the product
INS_005	Solar energy is renewable, and this principle must be present in the facilities	The purpose of the product
INS_006	INSOC needs to take into account national fire protection measures for the construction of solar systems	Legal requirements
INS_007	INSOC should consider necessary permits in order to set up LEV boxes in public spaces	Legal requirements
INS_008	INSOC should consider requirements deriving from national laws on preservation of historical monuments	Legal requirements
INS_009	INSOC must consider that infrastructure needs to be efficiently managed and operated	The scope of the product

5.5 INDUCAR product

5.5.1 Overview

As stated in the DoA, INDUCAR is an inductive charger for e-cars. This USER-CHI product will consist of a wireless and highly automated charging solution for electric vehicles. INDUCAR will deliver an inductive charging solution that with high level of automated power transfer and a highly positive charging experience to the user, avoiding manual handling of wires. The hardware components will come with software for the wireless charging systems and the adaptation of the different vehicle types selected, to allow wireless charging. The targeted vehicles will be retrofitted, applying reasonable standards, in order to allow wireless charging.

Figure 33: INDUCAR product icon

With regards to INDUCAR, the wireless charging of electric vehicles is considered as an usercentred requirement with the aim of making the use of electric vehicles as comfortable as possible. The challenges for implementation are high. The installation space in the electric vehicle that can be considered for a wireless charging system is limited and the different vehicle types have very different ground clearances, which also depend on the loading condition of the vehicle. The electro-magnetic energy transfer is only reliable and efficient if the two corresponding inductors are optimally located in relation to each other.

The main topics that should be consider defining the technical requirements are those related to: Safety and operation for wireless charging, electro-magnetic compatibility (EMC) and magnetic field emissions. Moreover, existing regulations and standard should be also considered.

5.5.2 Figures of the Validation and Revision process

5.5.2.1 Dependencies

No dependencies detected on the INDUCAR requirements during the Validation process.

5.5.2.2 Conflicts

No conflicts detected on the INDUCAR requirements during the Validation process.

5.5.2.3 Objections

During the three iterations of the Volere methodology carried out in USER-CHI, a total of 4 objections were identified by the validators, which are shown in the Figure 34:

"Dynamic charge is out of the scope of this project.

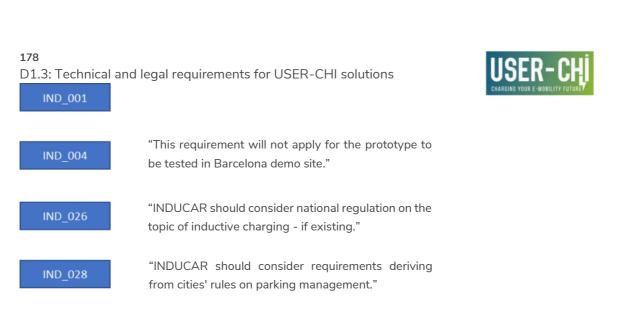


Figure 34: INDUCAR Product. Objections identified during the requirements definition process

5.5.3 Final list of requirements

After the three iterations of identifying and solving issues from the preliminary requirement list introduced in Volere Tool, the final list of requirements have been obtained. An overview of all INDUCAR requirements provided by the consortium can be found in Table 86**Table 81**:

ID	Description	Туре
IND_001	Two inductive charge modalities: dynamic charge vs static charge. Dynamic charge is out of the scope of the project	Users of the product
IND_002	Static charge is a by-night charge for city neighbourhoods, or a charge for long term parking in an airport or a train station	Users of the product
IND_003	Dynamic charge is a on route charge, managed from the mobile phone, in signalized sections of the highway	Users of the product
IND_004	Payment modality should be solved, according to use and energy transferred. This requirement will not apply for the prototype to be tested in Barcelona demo site	Users of the product
IND_005	The use of INDUCAR facility requires the employment of an app (similar to INCAR)	The purpose of the product
IND_006	The system must charge with static charge while parking	The purpose of the product

Table 86: Summary of the specific requirements of INDUCAR product

179 D1 3 [.] Techni	cal and legal requirements for USER-CHI solutions	USER-CH
IND_007	The system must have a very low maintenance	Maintainability and support requirements
IND_008	The system should charge the AMB fleet at the AMB offices or AMB's partner company	Relevant facts and assumptions
IND_009	The system should charge at least 3 electric cars from AMB fleet	Relevant facts and assumptions
IND_010	The system must be drivable	Functional and data requirements
IND_011	The individual charge for each vehicle should be about 3,6 kW	Functional and data requirements
IND_012	The total charge at a given time must not exceed 20 kW	Relevant facts and assumptions
IND_013	The charge must be available during the whole day and the whole night	Operational requirements
IND_014	The system must have all the safety requirements given for electro- magnetic fields	Security requirements
IND_015	The system must have MOD, FOD and/or LOD in proper combination to ensure user's safety	Security requirements
IND_016	The system should be user friendly	Usability and humanity requirements
IND_017	The system should be robust	Performance requirements
IND_018	The system must charge the vehicle automatically	Users of the product
IND_019	The system should inform status on the telephone	Look and feel requirements
IND_020	The system must charge on a specific position	Operational requirements
IND_021	The vehicle must be park with a specific parking direction to charge correctly	Functional and data requirements
IND_022	A positioning system must be available to guide the driver to park correctly	Operational requirements
IND_023	The guiding system could be through an App OR through a wall box indicator	Usability and humanity requirements

180			
D1.3: Technical and legal requirements for USER-CHI solutions			
IND_024	The component on the pavement / parking surface must be easy to install over the surface of the parking position	Us ability^{YOUR E-WOBULTY and} humanity requirements	
IND_025	The wireless charging system should have a competitive performance compare to standard cable charging solution	Performance requirements	
IND_026	INDUCAR should consider national regulation on the topic of inductive charging - if existing	Legal requirements	
IND_027	Requirements deriving from European / national calibration and measurement laws need to be taken into acount for different billing models	Legal requirements	
IND_028	INDUCAR should consider requirements deriving from cities' rules on parking management	Legal requirements	

5.6 INFRA product

5.6.1 Overview

INFRA is the Interoperability Framework that will be provided by USER-CHI. INFRA consists of a package of rules, guidelines and recommendations that will support highly interoperable processes among the electromobility stakeholders. INFRA will set common ground to facilitate the conduction of formal agreements among all involved agents, and will ensure the accuracy, reliability, continuity, and evolution of the service delivered.

Finally, INFRA will analyse roaming, crypto networks and virtual currencies as ways to facilitate payment interoperability among EV drivers, EMSPs and CPOs, and will also study cyber security and protection measures against the potential cyber threats that might target the payment, billing, data management and data sharing processes that take place in interoperability and roaming schemes among the involved stakeholders.

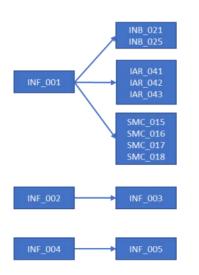


Figure 35: INFRA product icon

5.6.2 Figures of the Validation and Revision process

5.6.2.1 Dependencies

During the three iterations of the Volere methodology carried out in USER-CHI, 3 dependencies were identified by the validators. These dependencies are shown in

"This list of requirements depends on requirement INF_001 as legal and contractual aspects should be studied in INFRA"

Comment 1: "This is the general question of whether we want to address specific legal requirements within each technical product or collect them within the legal layer of INFRA. The first approach is clearer and better manageable. Legal interoperability = INFRA."

"Could the classification of requirements into functional and nonfunctional requirements to determine interoperability (INF_002) depend on the benchmark (INF_003)?"

"To have a common understanding (INF_005), all stakeholders should be involved in the implementation process of the products

Figure 36: INFRA Product. Dependencies identified during the requirements definition process

182D1.3: Technical and legal requirements for USER-CHI solutions5.6.2.2 Conflicts

No conflicts detected on the INFRA requirements during the Validation process.

5.6.2.3 Objections

No objections detected on the INFRA requirements during the Validation process.

5.6.3 Final list of requirements

After the three iterations of identifying and solving issues from the preliminary requirement list introduced in Volere Tool, the final list of requirements have been obtained. An overview of all INFRA requirements provided by the consortium can be found in Table 87:

Table 81

Table 87: Summary of the specific requirements of INFRA product

ID	Description	Туре
INF_001	INFRA should include organisational, legal, technical and semantic requirements to determine interoperability	The purpose of the product
INF_002	INFRA should classify requirements into functional and non- functional requirements to determine interoperability	The purpose of the product
INF_003	INFRA should benchmark functional and non-functional requirements to determine interoperability	The purpose of the product
INF_004	INFRA should include all stakeholders involved in the implementation process of the products (CLICK, INCAR, SMAC, INSOC and INDUCAR)	The scope of the work
INF_005	Have a common understanding among all stakeholders involved in the implementation process of the products (CLICK, INCAR, SMAC, INSOC and INDUCAR)	Cultural and political requirements
INF_006	INFRA should provide a role scheme specifying different understandings, goals, functions, system boundaries and responsibilities of the products	Performance requirements
INF_007	INFRA should identify national, regional and local barriers for interoperability from a legal perspective	The scope of the work
INF_008	Through INFRA the knowledge about legal feasibility of interoperability should be shared	The scope of the work

183 D1.3: Techni INF_009	cal and legal requirements for USER-CHI solutions Through INFRA the contractual complexity and heterogenity of B2B arrangements for access to charging networks should be reduced	USER-CH The scope of the work
INF_010	INFRA research should provide the alternatives to simplify the EMSP/CPOs contracts.	The scope of the product
INF_011	INFRA should clarify the concepts of interoperability and roaming, in the scope of charging infrastructure	Operational requirements
INF_012	INFRA should clarify if it is mandatory, according to the current law, to provide ad-hoc payment in the EV charging points	Legal requirements
INF_013	INFRA research should provide indications on how the new technologies, such as Blockchain, could be incorporated in order to guarantee secure transactions	The scope of the product
INF_014	INFRA research should address Smart Contracts (blockchain) to identify how could it be applied to simplify interoperability in the EV charging infrastructure	Operational requirements
INF_015	Legal topics must be considered in INFRA	The scope of the product
INF_016	INFRA must study how Alliance for Parking Data Standards (APDS) will facilitate seamless integration for potential users	Legal requirements
INF_017	INFRA must consider interoperability requirements deriving from Art. 4 (4) AFI-Directive	Legal requirements
INF_018	INFRA should analyze and evaluate existing E-roaming platforms (e.g. hubject) and identify practical and legal shortcomings from the users' and operator's perspective	The scope of the product
INF_019	INFRA could provide legal information in a structured way as input for CLICK	Functional and data requirements

5.7 EMOBEST product

5.7.1 Overview

As stated in the DoA, the e-Mobility replication and best practice cluster EMOBEST, will be a collaboration platform to facilitate the transfer of best practices among the demonstration and replication cities and other leader and follower cities in Europe, enhancing results' replication even after the project completion. It will help local governments, urban planners, mobility departments and transport authorities to replicate solutions and learn from the experience of other cities, in a very direct and efficient way.

D1.3: Technical and legal requirements for USER-CHI solutions EMOBEST will make use of the experience gained through all USER-0

demonstration activities, and will provide technical, legal and economic feasibility analysis of USER-CHI business models, implications for Europe-wide take-up and rollout of results, methods and policies recommendations for action on European and national levels for a more harmonised take-up on the internal European market.

Figure 37: EMOBEST product icon

5.7.2 Figures of the Validation and Revision process

5.7.2.1 Dependencies

During the three iterations of the Volere methodology carried out in USER-CHI, only one dependency was identified by the validators, as it is shown below in Figure 38:

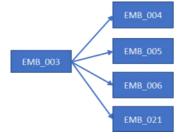

"Those two are linked together. EMB_022 can be either further explained, or merged with EMB_008"

Figure 38: EMOBEST Product. Dependencies identified during the requirements definition process

5.7.2.2 Conflicts

Also, one conflicts was detected on the INFRA requirements during the Validation process (Figure 39):

"FAIR principles can be applied since data the platform will collect/store are reused or could be reused. In case of best practices, this could be done by using a set of metadata fields to characterize/identify each of them."

Figure 39: EMOBEST Product. Conflict identified during the requirements definition process

5.7.2.3 Objections

No objections detected on the INFRA requirements during the Validation process.

5.7.3 Final list of requirements

After the three iterations of identifying and solving issues from the preliminary requirement list introduced in Volere Tool, the final list of requirements have been obtained. An overview of all EMOBEST requirements provided by the consortium can be found in Table 88:

Table 88: Summary of the specific requirements of EMOBEST product

ID	Description	Туре
EMB_001	eMoBest must facilitate the exchange of best practices	The purpose of the product
EMB_002	eMoBest must target city experts	Users of the product
EMB_003	eMoBest would be a physical collaboration platform in the framework of existing Eurocities working groups	Look and feel requirements
EMB_004	eMoBest would be a virtual collaboration platform in the frame of USER-CHI dedicated webinars	Look and feel requirements
EMB_005	eMoBest would make use of the USER-CHI website as a public repository	Look and feel requirements
EMB_006	eMoBest must keep a flexible structure to adapt to needs	Naming conventions and definitions

186		IISER-CHI
EMB_007	cal and legal requirements for USER-CHI solutions eMoBest should rely on input from other WPs	Functional and data requirements
EMB_008	eMobest will provide the most suitable solutions for replicating successful business models considering the city peculiarities (e.g. size, local needs, etc.)	The scope of the product
EMB_009	sMoBest should facilitate standardisation recommendations	The scope of the product
EMB_010	eMoBest should facilitate policy recommendations on a more harmonised take-up in the EU market	The scope of the product
EMB_011	eMoBest should promote results of the EU regulatory and standard framework analysis	The scope of the product
EMB_012	Approval processes in different countries and cities for building up charging infrastructure should be shared	The scope of the work
EMB_013	Transparency on national regulations for charging like max time	The scope of the work
EMB_014	Make sure to be able to include citizens' inputs (citizen science)	The scope of the work
EMB_015	Be searchable for different audiences	The scope of the product
EMB_016	Have the opportunity to perform specific topic-related searches	The scope of the product
EMB_017	Searchable based on geographical location	The scope of the product
EMB_018	eMoBest could indicate KPIs to monitor in order to successfully carry out charging infrastructure projects	The scope of the product
EMB_019	Foster collaboration and co-creation with all involved parties	Cultural and political requirements
EMB_020	Foster a holistic perspective by moving from contents "tightly" clustered by type to an "all-encompassing" approach so creating synergies among them and so resulting to be more effective.	The scope of the product
EMB_021	Support FAIR data principles	Performance requirements
EMB_022	Provide users with instruments as much tailored as possible to their needs/peculiarities allowing them to roll out methodologies, tools and/or cost-effective business models meeting needs that matter	The scope of the product

187 D1.3: Technie	cal and legal requirements for USER-CHI solutions	USER-CH
EMB_024	eMoBest should include information about campaigns, how successfull they have been and what have been the results	Ideas for solutions
	successfull they have been and what have been the results	

6.Conclusions

Chapter 6 presents the conclusions of the relevant general requirements that USER-CHI products must consider, illustrating the differences in the technical and legal frameworks of the different countries, but also the similarities on the European or international level.

The most important conclusion and thematic bracket here, in terms of user-centric charging infrastructure, is especially fostering interoperability along the technical and legal aspects of USER-CHI products' development to help overcome the widely established proprietary charging systems and services in Europe. USER-CHI product INFRA (deliverable 3.2) will address this challenge by providing a framework and guidelines to support interoperable charging services in the European Union in terms of the organisational, technical, and legal aspects.

6.1 Technical Requirements

From the technical perspective, the report findings do not allow for drawing definitive, universal conclusions considering a dynamic industry, as electromobility, with so many different product and services across the EU. However, several remarks about the status of the technical standards that USER-CHI technical products must consider for its implementation in the EU countries where the project is implemented, are drawn in the subsections below.

CROSS-CUTTING TECHNICAL REQUIREMENTS

When implementing technical products like CLICK, INCAR, SMAC, and/or INDUCAR within the EU, the product-specific technical requirements (see 4.2) should be considered in conjunction with the cross-cutting technical requirements (see 4.1)

The report points out a set of technical requirements that are transversal to the technical USER-CHI products for BEVs and PHEVs (CLICK, INCAR, SMAC, and INDUCAR). However, the technical USER-CHI product INSOC focuses on the implementation of LEVs and complies therefore with a different set of technical requirements. The main standardisation areas and international standards relevant for USER-CHI technical products are twofold: 1) Charging infrastructure and charging point (IEC 61851-1:2017; IEC 62196-1:2014; and IEC 60364-7-722:2018), and 2) Electro-magnetic compatibility (IEC 61851-21-1:2017; and IEC 61851-21-2:2018).

When developing charging infrastructure with outputs of more than 3.7 kVA and less than 12 kVA in Germany, there is an obligation to notify the grid operator. It should be noted that even with a relatively small number of plants of smaller capacity, the total capacity limit of 12 kVA of the local electricity supply can quickly be exceeded and, in addition to the obligation to notify, the grid operator must give his consent.

A significant number of relevant technical requirements emerging from the automotive engineering, information and communications technology, and electrical engineering sectors has been identified. These must be appropriately used and disseminated. Providing information on such standardisation activities and their status to product developers and service providers across the EU is relevant for further electromobility uptake. Moreover, further work should focus less on developing new standards than on expanding/adapting existing standards and specifications to the needs of electromobility. Interdisciplinary cooperation at an international level is required, mainly for interfaces standardisation.

• CHARGING SPEED

GRID CONNECTION

•

Charging speeds are directly related to the available charging technology in the EV itself, the charging points, and the charging plugs. Specific information regarding charging plug components for electromobility is provided in 4.1.1.1.

• TECHNICAL STANDARDISATION LANDSCAPE

International, European, and national organizations were identified as part of the standardisation landscape. The standardisation committees involved in the definition of technical standards in relevant domains for electromobility (namely: automotive technology, electrical technology, and telecommunications) and the relationships amongst the organizations and their regulatory bodies, were identified. International electrotechnical standardisation is carried out at IEC, while these activities in the automotive sector and the telecommunication sectors are carried out at ISO and ITU, respectively.

Moreover, to promote innovation, technical standardization must relate to functionality and provisions regarding technical solutions must be avoided ("performance-based rather than descriptive"). However, technical solutions must be determined to ensure the required interoperability for interfaces standards (e.g., between vehicle and grid infrastructure)

• CHARGING INFRASTRUCTURE FOR EVS

Within the USER-CHI consortium, the supply of electric energy for EVs charging infrastructure is mainly provided by the DSO. USER-CHI partners reported that in Italy and Germany, there are

D1.3: Technical and legal requirements for USER-CHI solutions available public charging points, connected to the grid, and private ones withi energy supply concept.

Charging speeds implemented in German, Italian, and Spanish USER-CHI cities are: AC 1-phase (3.7kW, up to 16A, 230V); AC 3-phases (22-44kW, up to 63, 400V), and DC charging (350kW, up to 500A, 400V-500V). In Italy, it is important to note that DC grid connection for HPC is made to MV grids, since the voltage varies from region to region. Charging speed variability may stem from the varied roles of public charging in different cities and countries within the EU and should be addressed when considering cross-border interoperability. The standard IEC/TS 61439-7 (VDE V 0660-600-7) defines specific requirements for the design of AC and DC charging equipment.

INTEROPERABILITY - TOWARDS A UNIFORM WORLDWIDE CHARGING INFRASTRUCTURE

As with combustion engine vehicles, it must be possible to charge EVs everywhere, at all times within the EU. This means ensuring interoperability of different brands of vehicles with the infrastructure provided by various operators. The standardisation of charging techniques and billing/payment systems must ensure the development of a charging interface that is useroriented, uniform, safe and easy-to-operate. User interests must have priority over the interests of individual companies.

The report Identified multiple roaming protocols for electric mobility in Europe, namely: OCHP, OICP, eMIP, and OCPI. All roaming protocols pursue the same goal: to offer roaming to EV drivers across the EU. However, the hubs that use their own proprietary protocol do not communicate with each other and do not exchange data, which is a barrier to European interoperability. OCPI offers alternative ways to connect (e.g., peer-to-peer) and to overcoming this barrier.

COMMUNICATION BETWEEN EVS AND CHARGING INFRASTRUCTURE

In 2018, the test cases for a conformance test (ISO 15118-4 and ISO 15118-5) were published as an international communication standard. Nevertheless, the 2nd Edition of the communication standards ISO 15118-1 and ISO 15118-2 will merge wired and wireless communication and specify messages and parameters for energy recovery.

ENERGY RECOVERY INTO THE ELECTRICAL SUPPLY NETWORK & V2G TECHNOLOGIES

Increasingly, the recovery of electrical energy from the vehicle battery into the electrical grid is being considered across the EU. An inverter installed in the EV or in the charging infrastructure converts DC stored in the vehicle battery into AC required by the consumer. Accordingly, first pre-normative activities are taking place that address the question of how bidirectional charging can be integrated sensibly and safely into a higher-level system. EVs can only contribute to grid stability and grid support if the EV is connected to the grid at the time of energy demand. Gridserving control, nevertheless, makes sense mainly in the private sector, as there is a high flexibility potential compared to publicly accessible charging stations. In addition to reducing the charging power during the charging process in bottleneck situations, in the future, feeding back energy

D1.3: Technical and legal requirements for USER-CHI solutions

quantities over longer periods of time and providing energy control over short periods of time in the range of seconds and minutes can also effectively support the grid. Technically, this is feasible and has already been successfully implemented in pilot projects. The Italian and German USER-CHI partners are currently testing and demonstrating V2G technologies. Italy refers to the ISO 15118 family "Road vehicles - Vehicles to grid communication interface" as the reference standard for V2G. At present, however, neither the EVs nor the charging stations are designed as standard for grid-connected regenerative power. This application has not yet been considered in detail in the standardization. Regarding the CCS charging process, it is planned to address the topic in the 3rd edition of IEC 61851-23.

• INDUCTIVE CHARGING

Inductive charging aims at facilitating everyday use of EVs and could enable, for example, to conveniently use short stops for charging. Conversion of existing conductive charging infrastructure to inductive charging is possible, e.g., an existing wallbox could be replaced by the inverter and a charging cable could be installed from the wallbox to a charging plate on the ground.

Analogous to conductive charging, technical connection conditions must also be considered. This means that charging with a power of up to 4.6 kVA is possible with 1-phase. When planning higher charging capacities, a 3-phase connection should be provided. The power classes currently being discussed in the standardisation process range up to a charging power of 22 kW.

The still under-development standards also examine the EMC of inductive charging. The standards provide for field strengths that are kept so low that none of the currently globally recognised limit recommendations is exceeded or there is any risk to the health of living beings. In addition, intrinsic safety of the system is required both on the vehicle and on the network side, so that in the event of a possible hazard (e.g., heating of metallic objects around the magnetic field), countermeasures are initiated immediately. With inductive charging, communication for controlling the charging process will also take place wirelessly. WLAN according to ISO15118-8 will be used for this purpose. The messages are standardised in ISO15118-20. The communication required for charging is standardised via ISO 15118.

6.2 Legal Requirements

The main conclusions of this report from the legal perspective include the key aspects of the analysis of the legal questionnaires on key topics of USER-CHI, such as the interoperability, user-friendliness of the use of charging points, as well as data sharing processes between CPOs.

NATIONAL RULES ON TARIFF MODELS

D1.3: Technical and legal requirements for USER-CHI solutions

The national legal frameworks analysed feature differences regarding tariff models for the use of public charging infrastructure. National rules regulating tariff models for the use of public charging infrastructure exist neither in the Finnish or the Spanish legal framework. However, regarding the Austrian legal framework a consumption-based tariff (kWh) is not approved by existing laws so far, whereas Austrian experts indicate that an update on this legal matter is expected. Furthermore, according to the German legal framework merely time-based tariff models are not possible under the current legal interpretation of the PangV by the by the Federal Ministry for Economic Affairs and Energy (BMWi).

• INTEROPERABILITY IN TENDER SPECIFICATIONS

Tender specification in Berlin and Murcia did not imply stricter requirements on questions of interoperability as laid out in the AFID in their last tender processed for charging infrastructure in 2015.

MEASURING AND CALIBRATION LAW

The Swiss legal framework excludes EV charging stations for short-term customers from the need to use electricity meters as billing basis for electricity consumption, whereas in Germany the legal framework of measuring and calibration law applies to EV charging stations.

Austrian measurement and calibration are only applicable to the CPO instead of the users of measured values, like EMSPs. Regarding the Spanish and German legal framework the legal duty to comply with legal metrology is mostly relevant for the users of measuring instruments, like CPOs. However, within the German legal framework in some situations, it could affect EMSPs, who manage the billing process between CPOs and final users while using the measured values.

Regarding the Finnish, Austrian and Spanish legal framework back-end systems are not (yet) subject to the requirements arising out of measuring and calibration law.

In Germany, requirements from measuring and calibration laws are not only applicable for measuring devices, but also to the back-end systems of EV charging points if they are to be categorised as 'additional equipment'.

PUBLIC PARTICIPATION WITHIN THE PLANNING PROCEDURE

In Berlin and Murcia public participation during the planning process of charging infrastructure is not mandatory. However, experts recommend the public participation to foster acceptance in both cases. On the other hand, in the city of Turku public participation within the planning procedure of charging infrastructure is mandatory.

• DYNAMIC DATA OF CHARGING POINTS

Neither under the German, nor the Spanish, nor the Finnish legal framework CPOs are required to provide real-time location and availability data concerning their charging points.

However, in Barcelona a tool, which offers real-time location and availability data concerning charging points in the region has been established on a voluntary basis. In the city of Murcia CPOs might have to provide real-time location and availability data in case the authorities have included these requirements in the applicable contracts. On the other hand, the Austrian legal framework includes a requirement for CPO's to provide real-time location data regarding the availability of their charging points.

• INTEROPERABILITY OF DATA SHARING PROCESSES AMONG CPOS

In the national legal framework of Germany there are currently no provisions for the data sharing processes among providers of charging services regarding minimum standards of interoperability. However, the draft bill of the amendment of the LSV might include additional provisions on the use of standardized communication for CPOs. In Spain interoperability is not required by law. However, some municipalities require CPOs to use OCPP.

BOOKING OF PUBLIC PARKING SPOTS FOR THE PURPOSE OF CHARGING

In the cities of Berlin, Barcelona, and Graz the booking/reservation of public parking spots for using charging infrastructure is not possible. However, in the city of Murcia public parking spaces next to charging points can be booked through an app. This privilege derives from a local ordinance issued by the municipality.

• REGULATION OF ROAMING FOR EV CHARGING

In neither the German, the Finish, the Spanish, nor the Austrian legal frameworks special legal requirements on the topic of roaming platforms exist, which are applicable for the charging process of EVs in Europe.

• REGULATION ON INDUCTIVE CHARGING

Neither the German, the Spanish, the Finnish nor the Austrian legal framework includes specific provisions on the topic of inductive charging for EVs yet.

• NATIONAL IMPLEMENTATION OF THE AFID

With regard to the Finnish national law framework the AFID has merely been approved by Finnish laws due to the fact that the national legal framework on the topic had already implemented stricter requirements.

Differences arise on the topic of national implementation of the AFID regarding Art. 4 No. 9 AFID in Austria, Germany, and Spain. Art. No. 4 No. 9 AFID requires that EV users should be able to charge without having to conclude a contract with the CPO.

No Austrian laws explicitly establishes this requirement. However, in the city of Graz a nondiscriminatory access is implemented regarding the major public infrastructure. In the case of Murcia, EV users have to register as new users or clients in order to use the charging services of the local CPO. With regard to the city of Berlin § 4 LSV requires CPOs to allow EV users to charge without entering into long-term contracts and states explicit minimum requirements on how this could be achieved. However, the current draft bill of the amendment of the LSV provides the additional minimum requirement for the possibility to pay via a common credit card system.¹⁹²

Moreover, the requirement of non-discriminatory access has been linked to the granting of national subsidies for infrastructure within the Austrian legal framework. The national implementation laws of Spain do not include this goal explicitly. In regard to the German national legal framework §§ 3 (1), (2) and (3) LSV require specific equipment of charging points in order to ensure the use with type 2 couplings in accordance with the DIN EN 62196-2 (AC standard and fast charging), as well as with couplers of type Combo 2 in accordance with the standard DIN EN 62196-3, July 2012 edition (DC normal and fast charging).

Regarding the city of Berlin and the German aspects of interoperability standardized communication interfaces are not required by the LSV. However, the current draft bill of the amendment of the LSV includes the requirement to use a standardized interface, which can be used to transmit (dynamic) data.¹⁹³ The Spanish legal framework does not include legal requirements on the interoperability between charging points run by different CPOs. However, Spanish experts indicate that legal requirement for interoperability are under development.

In the City of Turku, no national laws ensure aspects of interoperability. Regarding the City of Graz, the Austrian national government has offered subsidies to implement this aspect of interoperability in the past for local CPOs. Accordingly, various aspects of interoperability have been implemented as a result.

¹⁹² available at: https://www.bmwi.de/Redaktion/DE/Downloads/J-L/konsolidierter-text-Isvnovelle.pdf?__blob=publicationFile&v=10.

¹⁹³ available at: https://www.bmwi.de/Redaktion/DE/Downloads/J-L/konsolidierter-text-lsvnovelle.pdf?__blob=publicationFile&v=10.

Acronyms

Acronym	Meaning
А	Amperage
AC	Alternating Current
AFID	Alternative Fuels Infrastructure Directive
BauO BIn	Bauordnung Berlin - Berlin Building Code
BDSchG	Bundesdatenschutzgesetz – Federal Data Protection Act
BerlStrG	Berliner Straßengesetz – Berlin Street Law
BEV	Battery Electric Vehicle
BMWi	Bundesministerium für Wirtschaft und Energie - Federal Ministry of Economy and Energy
BNetzA	Bundesnetzagentur - Federal Network Agency
CCS	Combined Charging System
CDR	Charge Detail Records
CEN	European Committee for Standardization
CENELEC	European Committee for Electrotechnical Standardization
CLICK	Charging infrastructure Locatlon and HolistiC Planning Kit (USER-CHI product)
СРО	Charge Point Operator
CsgG	Carsharinggesetz – Carsharing Act
DC	Direct Current
DE	Deutschland / Germany
DIN	Deutsches Institut Für Normung – German Institute for Standardization
DKE	Deutsche Kommission Elektrotechnik Elektronik Informationstechnik – German German Commission for Electrical, Electronic & Information Technologies
DoA	Description of Action

196 D1.3: Technical and I	legal requirements for USER-CHI solutions
Acronym	Meaning
DR	Demand Response
DSchG Bln	Denkmalschutzgesetz Berlin - Law for the protection of historic monuments in Berlin
DSM	Demand Side Management
DSO	Distribution System Operator
EC	European Commission
EEG	Erneuerbare Energien Gesetz – Renewable Energy Sources Act
EMC	Electro-magnetic Compatibility
EMSP	Electromobility Service Provider
EMT	Electro-magnetic Tolerance
EnWG	Energiewirtschaftsgesetz – Energy Industry Act
ES	España / Spain
ETRA	ETRA I+D (USER-CHI project partner)
ETSI	European Telecommunications Standards Institute
EU	European Union
EV	Electric Vehicle
EVSE	Electric Vehicle Supply Equipment
FCD	Floating Car Data
GA	Grant Agreement
GDPR	General Data Protection Regulation
GDEW	Gesetz zur Digitalisierung der Energiewende - Act on the Digitalisation of the Energy Transition
GEIG	Gebäude-Elektromobilitätsinfrastruktur-Gesetz - Building and Electric Mobility Infrastructure Act
GIS	Geographic Information Systems
GUI	Graphic User Interface
GWB	Gesetz gegen Wettbewerbsbeschränkungen - Act against Restraints of Competition
HPC	High Power Charging
HU	Hungary
ICIO	Construction and Works Tax

197	nd legal requirements for USER-CHI solutions
Acronym	Meaning Meaning
ICT	Information and Communication Technology
IC-CPD	In Cable Control and Protection Device
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
IKEM	Institut für Klimaschutz, Energie und Mobilität – Institute for Climate Protection, Energy and Mobility
INCAR	Interoperability, Charging and Parking Platform (USER-CHI product)
INDUCAR	Inductive Charging for e-Cars (USER-CHI product)
INFRA	Interoperability Framework (USER-CHI product)
INSOC	Integrated Solar DC-Charging for LEVs (USER-CHI product)
ISO	International Organization for Standardization
IT	Italy
ITU	International Telecommunication Union
kVA	Kilo Volt-ampere
kW	Kilowatt
LEV	Light Electric Vehicle
LSV	Ladesäulenverordnung - Charging Point Decree
LV	Low Voltage
LVD	Low Voltage Directive
M2M	Machine-to-machine
MessG	Measuring and Callibration Act
MessV	Measuring and Callibration Ordinance
MID	Measuring Instruments Directive
MoU	Memorandum of Understanding
MV	Medium Voltage
NAV	Niederspannungsanschlussverordnung - Low Voltage Connection Ordinance
NFC	Near-field communication
NPE	Nationale Plattform Elektromobilität – National Platform for Electromobility

D1.3: Technical a	and legal requirements for USER-CHI solutions	ER-Ch
Acronym	Meaning	
NPM	Nationale Plattform Zukunft der Mobilität – National Platform F Mobility	uture of
NSF	National Strategy Framework on the development of an Altern Fuels Infrastructure	ative
OCHP	Open Clearing House Protocol	
OCPI	Open Charge Point Interface	
OCPP	Open Charge Point Protocol	
OICP	Open InterCharge Protocol	
PHEV	Plug-in Hybrid Electric Vehicle	
POI	Point of Interest	
PV	Photovoltaic	
PV system	Photovoltaic System	
QR-Code	Quick Response-Code	
R & D	Research & Development	
RFID	Radio Frequency Identification	
RES	Renewable Energy Sources	
RS	Routing Service	
SAE	Society of Automotive Engineers	
SC	Sub Committee	
SMAC	Smart Charging Tool (USER-CHI product)	
StromNEV	Ordinance on Charges for Access to Electricity Supply Networ	ks
StromStG	Stromsteuergesetz - Electricity Tax Law	
StromStV	Stromsteuerverordnung - Electricity Tax Ordinance	
ТАВ	Technische Anschlussbedingungen – Technical Connection Co	onditions
TAR	Technische Anschlussregeln (engl. TCR)	
TAR-NS	Technische Anschlussregeln Niederspannung – Technical Con Rules for low voltage	nection
ТС	Technical Committees	
TCR	Technical Connection Rules	
USER-CHI	Project Title: innovative solution for USER centric CHarging Infrastructure	

ПСЕР-СПІ

199 D1.3: Technical and legal requirements for USER-CHI solutions		
Acronym	Meaning	
V	Voltage	
VBB	Verkehrsverbund Berlin Brandenburg – Transport Association Berlin Brandenburg	
VDE	Verband der Elektrotechnik, Elektronik und Informationstechnik – German Association for Electrical, Electronic & Information Technologies	
VDE FNN	Forum Netztechnik/Netzbetrieb im VDE – Network Technology/Network Operation Forum at VDE	
VMZ	VMZ Berlin Betreibergesellschaft mbH (USER-CHI project partner)	
VPP	Virtual Power Plants	
WBS	Work Breakdown Structure	
WP	Work Package	
WPT	Wireless Power Transfer	
BEV	Battery Electric Vehicle	
PHEV	Plug-in Hybrid Electric Vehicle	
Terna	Italian Transmission Grid Operator	
RTCM	Radio Technical Commission for Maritime Services	

References

BDEW,SmartMetering,2021(availableathttps://www.bdew.de/energie/digitalisierung/welche-rolle-spielen-smart-meter-fuer-die-digitalisierung-der-energiewende/, last accessed: 04.01.2021).dialableat

Berliner Agentur für Elektromobilität, Ladeinfrastruktur, 2021 (available at: https://www.emoberlin.de/de/foerderung/ladeinfrastruktur/, last accessed: 04.01.2021).

Beschluss des Bundesrates, Entschließung des Bundesrates - Digitalisierung der Energiewende - Rasche Umsetzung der Strombinnenmarktrichtlinie (RL 2019/944/EU), 03.07.2020, (available at: https://www.bundesrat.de/SharedDocs/drucksachen/2020/0201-0300/286-20(B).pdf?__blob=publicationFile&v=1, last accessed: 04.01.2021).

BMVI, Förderprogramm Ladeinfrastruktur, (available at: https://www.bmvi.de/DE/Themen/Mobilitaet/Elektromobilitaet/Elektromobilitaetkompakt/elektromobilitaet-kompakt.html, last accessed: 11.01.2020

BMVI, DIFU - NOW, Genehmigungsprozesse der E-Ladeinfrastruktur in Kommunen: Strategische und rechtliche Fragen, 2014, p.12, (https://www.xn--starterset-elektromobilitt-4hc.de/content/3-Infothek/2-Publikationen/38-genehmigungsprozess-der-e-ladeinfrastruktur-in-kommunen/genehmigungsprozess_der_e-ladeinfrastruktur_in_kommunen.pdf, last accessed: 04.01.2021).

BMVI, Elektromobilität beginnt in den Kommunen – Checkliste für kommunale Vertreter zum Aufbau von Ladeinfrastruktur, p.3 (available at: https://www.xn--starterset-elektromobilitt-4hc.de/content/3-Infothek/1-Checklisten/checkliste-ladeinfrastruktur/checkliste-ladeinfrastruktur.pdf, last accessed: 04.01.2021).

BMVI,ElektromobilitätmitBatterie,2021,(availableat:https://www.bmvi.de/SharedDocs/DE/Artikel/G/elektromobilitaet-mit-batterie.html,lastaccessed: 04.01.2021).

BMVI, First report on the implementation of the national strategic framework in Germany, 2019, p.20, (available at: https://www.bmvi.de/SharedDocs/DE/Anlage/G/MKS/afid-erster-bericht.pdf?__blob=publicationFile, last accessed 04.01.2021).

BMWi, Innovationen in der Elektromobilität – IKT für Elektromobilität III: Einbindung von gewerblichen Elektrofahrzeugen in Logistik-, Energie- und Mobilitätsinfrastrukturen, 2017,

D1.3: Technical and legal requirements for USER-CHI solutions (available at: https://www.bmwi.de/Redaktion/DE/Publikationen/Technologie der-elektromobilitaet.html, last accessed: 04.01.2021).

BMWi, Preisangabe für und Abrechnung von Ladestrom für Elektromobile, 2018, (available at: https://www.bmwi.de/Redaktion/DE/Downloads/P-R/preisangabe-fuer-und-abrechnung-vonladestrom-fuer-elektromobile-rechtsgutachten.html, last accessed: 04.01.2021).

BMWi, Zweite Verordnung zur Anderung der Ladesäulenverordnung, Referentenentwurf des Bundesministeriums für Wirtschaft und Energie, (available at: https://www.bmwi.de/Redaktion/DE/Artikel/Service/Gesetzesvorhaben/zweite-verordnung-zuraenderung-der-ladesaeulenverordnung.html, last accessed: 04.01.2021).

Eneco – E-mobility Eichrechtskonforme Ladesäulen für eine transparente Abrechnung, (available at: https://www.eneco-emobility.com/de/tips/eichrechtskonforme-ladesaeulen/, last accessed: 04.01.2021).

Ferwerda et al, Advancing E-Roaming in Europe: Towards a Single "Language" for the European Charging Infrastructure, World Electric Vehicle Journal, 2018, p.7.

Grupo Interministerial para la coordinacion de Informe sobre la aplicación del marco de acción nacional de energías alternativas en el transporte, (available at: https://industria.gob.es/es-ES/Servicios/Documents/aplicacion-marco-energias-alternativas.pdf, last accessed: 04.01.2021).

Hall, D., Lutsey, N., 2017, Emerging best practices for electric vehicle charging infrastructure (Available at https://theicct.org/sites/default/files/publications/EV-charging-bestpractices_ICCT-white-paper_04102017_vF.pdf., last accessed: 04.01.2021).

has to be gmbh, 2020, Value chain in charging infrastructure operation with has to be. in the context of efficient design of complex roaming relationships. Available online at https://f.hubspotusercontent40.net/hubfs/8087690/Whitepapers/White-Paper-Charginginfrastructure-EN-v5.pdf?utm_medium=email&_hsmi=93859973&_hsenc=p2ANqtz-

9q3FujiotOQ2t5NDQBke9wwNilyfOhphjVtS_i3Wen6YAskIAeDXQuLsADNWKLwpKtL1OuIAY hijCFHtaVFPe0Yz5bDQ&utm_content=93859973&utm_source=hs_automation, last accessed: 04.01.2021).

Köllner, C., 2020, Wie ist der Status quo beim bidirektionalen Laden?, (available at: https://www.springerprofessional.de/ladeinfrastruktur/elektrofahrzeuge/wie-ist-der-statusquo-beim-bidirektionalen-laden-

/18217570#:~:text=Bidirektionales%20Laden%20steckt%20noch%20in%20den%20Kindersc huhen&text=Vehicle%2Dto%2Dhome%2C%20das,sondern%20in%20das%20Hausstromnetz %20eingespeist, last accessed: 24.11.2020).

Kumar, M., 2019, "Oodles Blockchain", (available at: https://blockchain.oodles.io/blog/bigchaindbfeatures/, last accessed: 12.01.2021).

Martin, A., Schmidt, J., Nowack, F., Willing, J.N., Tomás, M., 2020, USER-CHI Project-Report: Interoperability and roaming services - D3.1–Design and specification of interoperability and roaming services.

Milk the sun, Gesetzliche Betreiberpflichten, 2020, (available at: https://de.blog.milkthesun.com/uberblick-uber-die-gesetzlichen-pflichten-fur-betreiber-von-pv-anlagen/, last accessed: 04.01.2021).

Mühe, Dr. De Wyl, EnWZ, 2018, Rechtliche Rahmenbedingungen für die Abrechnung des Ladens von Elektrofahrzeugen, Zeitschrift?

Nationale Plattform Elektromobilität, 2012, Die deutsche Normungs-Roadmap Elektromobilität – Version 2 (available at: https://www.vda.de/de/services/Publikationen/Publikation.~1070~.html, last accesed on 11.16.2020)

Nationale Plattform Elektromobilität, 2014, The German Standardization Roadmap for Electromobility - Version 3.0. AG 4 - Standardization and Certification. Nationale Plattform Elektromobilität. (Available at: https://www.dke.de/resource/blob/778284/6a401ee3280cb3568e5cb3c386e39d62/the-german-standardisation-roadmap-for-electromobility---version-3-0-data.pdf, last accessed on 11.12.2020)

Nationale Plattform Elektromobilität, 2017, Die Deutsche Normungs-Roadmap Elektromobilität2020(Available at: https://www.plattform-zukunft-mobilitaet.de/wp-content/uploads/2018/11/NormungsRoadmap_Elektromobilitaet_2020_bf.pdf, last accessed on11.16.2020)

Nationaler Strategierahmen über den Aufbau der Infrastruktur für alternative Kraftstoffe, 2016, available at: https://www.bmvi.de/SharedDocs/DE/Anlage/G/MKS/mks-nationalerstrategierahmen-afid.html (last accessed 04.01.2021).

NOW-Broschüre, Rahmenbedingungen und Markt, 2018, p. 98, (available at: https://www.starterset-elektromobilität.de/content/3-Infothek/2-Publikationen/17-rahmenbedingungen-und-markt-elektromobilitaet-vor-ort-und-im-internationalen-vergleich/now_broschuere_rahmenbedingungen-und-markt.pdf, last accessed: 04.01.2021).

Preiß, Elektromobilität, Ladeinfrastruktur und das Netz: Aktuelle Entwicklungen, 2020, (available at: https://www.euwid-energie.de/elektromobilitaet-ladeinfrastruktur-und-das-netz-aktuelle-entwicklungen/, last accessed: 24/11/2021).

RED Electrica de Espana, Mapa de puntos públicos de recarga inteligente, (available at: https://www.ree.es/es/red21/vehiculo-electrico/puntos-publicos-recarga-inteligente, last accessed: 04.01.2021).

Schaufenster Elektromobilität, Eckpunkte für den rechtlichen Rahmen der Elektromobilität -Überblick und Handlungserwägungen der Begleit- und Wirkungsforschung zum Schaufenster-Programm Elektromobilität, 2017, (available at: https://www.mitteldeutschland.com/sites/default/files/uploads/2017/02/09/170130handlungse mpfehlungeneckpuntkerechtlicherrahmendere-mobilitaetschaufenster1.pdf, Last accessed: 24/11/2020).

Schmidt, DIN e.v. - Rechtsverbindlichkeit von Normen, 2021 (available at: https://www.din.de/de/ueber-normen-und-standards/normen-und-recht/rechtsverbindlichkeit-durch-normen, last accessed: 15/01/2021).

Senatsverwaltung für Stadtentwicklung und Umwelt, 2014, Elektromobilität in Berlin, Arbeitshilfe zur Erweiterung der Ladeinfrastruktur

Senatsverwaltung für Stadtentwicklung und Umwelt, 2020, Beschilderung von Ladestationen, (available at: https://www.parlament-berlin.de/adosservice/18/Haupt/vorgang/h18-2781-v.pdf), last accessed 18.01.2021)

Senatsverwaltung für Stadtentwicklung und Wohnen, 2015, Berliner Modell wird Realität: erste Ladesäule für Elektrofahrzeuge mit neuem Konzept geht ans Netz (available at: https://www.stadtentwicklung.berlin.de/aktuell/pressebox/archiv_volltext.shtml?arch_1504/nac hricht5567.html, last accessed: 04.01.2021).

SenWEB, Förderprogramm Wirtschaftsnahe Elektromobilität, Pressemitteilung, 30.09.2020, (available at:

https://www.berlin.de/sen/web/presse/pressemitteilungen/2020/pressemitteilung.998203.php, last accessed: 11.01.2020).

Technical guide for the application of the ITC BT 52, 2017, available at: https://www.v2charge.com/technical-guide-for-the-application-of-the-itc-bt-52/, last accessed: 04.01.2021).

Teichmann et al., 2012, Elektromobilität – Normen bringen die Zukunft in Fahrt. Edited by PricewaterhouseCoopers (Available at https://www.pwc.de/de/offentlicheunternehmen/assets/studie_normung.pdf, last accessed: 04.01.2021)

The Mobility House, Was sie zum eichrechtskonformen Laden eines Elektroautos wissen müssen,2019,(availableat:https://www.mobilityhouse.com/de_de/magazin/e-mobility/eichrechtskonformes-laden.html/, last accessed: 04.01.2021).

Varro, W., 2013, Technisches Leistungsverzeichnis als Anlage zur Ausschreibung für den Aufbau von Ladeinfrastruktur für Elektrofahrzeuge in der Stadt Berlin. TÜV SÜD Product Service GmbH.

VDE /DKE, Rechtliche Herausforderungen der Elektromobilität - Ein Überblick über aktuelle Problemstellungen und mögliche Lösungsansätze, 2018 (available at: https://www.dke.de/resource/blob/1795372/fdc63a4d68e670a994c9921f1b8c17ac/emobility-mit-dem-richtigen-rechtsrahmen-pdf-data.pdf, last accessed: 24/11/2020)

Wagner, L., 2020, Der technischer Leitfaden Ladeinfrastruktur Elektromobilität. Version 3. BDEW, DKR, ZVEH, ZVEI, VDE|FNN (Available at https://www.dke.de/resource/blob/988408/a2b8e484994d628b515b56376f809e28/technisch er-leitfaden-ladeinfrastruktur-elektromobilitaet---version-3-data.pdf, last accessed on 11.12.2020)

Wissenschaftliche Dienste – Deutscher Bundestag, DIN-Normen und Rechtssetzung (WD 7 -3000-198/199),2019,(availableat:https://www.bundestag.de/resource/blob/677848/f35cfe3e47845c4c9ae2b6839a9e6a2c/WD-7-198-19-pdf-data.pdf, last accessed: 04.01.2021).

Wissenschaftliche Dienste, Deutscher Bundestag, Nachhaltige Beschaffung im Vergaberecht,2018,(availablehttps://www.bundestag.de/resource/blob/556712/c882c695089456fc63da36784e911d44/WD-7-068-18-pdf-data.pdf, last accessed: 04.01.2021).

Annexes

Technical Questionnaires

Technical Requirements for CLICK

USER-CHI Product CLICK | Technical Questionnaire

The aim of the USER-CHI project is to unlock the potential of transnational and inter-regional electromobility in Europe. Therefore, innovative solution will be integrated to achieve interoperability for users. This includes services such as e-roaming, billing, authentication, and reservations of parking slots with charging points. The user is put at the centre of this research. Moreover, the synergies between electromobility and smart grids will be fostered to contribute to the European energy transition.

The developed technological tools, and business models will be put into practice and demonstrated in five demonstration cities: Barcelona metropolitan area (Spain), Rome (Italy), Berlin (Germany), Budapest (Hungary), and Turku (Finland). Also, two replication cities have been included in each of the TEN-T corridors involved in the project: Murcia (Spain) in the Mediterranean corridor and Florence (Italy) in the Scandinavian-Mediterranean corridor.

Currently, different charging technologies and types of charging stations in public, semi-public and private space exist. Hence, different requirements regarding local regulations and technical standards may apply. Publicly accessible charging infrastructure is subject to various EU, national, and local directives, regulations, technical safety requirements, and standards.

The aim of the questionnaire is to collect the technical standards that USER-CHI solutions should comply in all 5 USER-CHI partner countries and a set of at least 5 other relevant EU countries. The questionnaire will collect relevant technical standards for the implementation of USER-CHI products and will contribute to the deliverable D1.3 (Technical and Legal Requirements for USER-CHI Solutions) from a technical perspective.

The guestionnaire focuses on the USER-CHI product SMAC (Smart Charging developed and tested within the project. SMAC is a platform that provides smart grid integration services for slow, medium, fast, and ultra-fast charging by following the purpose of minimising the grid impact associated to the implementation of charging infrastructure. This smart charging tool will provide high-value services to electric vehicle (EV) drivers, such as minimum charging prices and maximum RES electricity supply, considering specific constraints that will be prioritised in the charging sessions scheduling process. Aside from that, SMAC will provide standard and scalable solutions for demand management and smart grid integration services by integrating V2G and using EVs as dynamic distributed storage devises, feeding electricity stored in their batteries back into the local electric grid when needed. That will bring benefits to the DSOs concerning flexibility and stabilisation while reducing the grid impact of new charging infrastructure. A main aspect of the demand management in SMAC will be an interconnected route management system for incoming vehicles while considering the grid availability, voltage, and frequency control constraints in real-time. Furthermore, SMAC will deliver a smart interconnection with AC and DC-Networks to uncover new value streams that attract investors to boost the up-scaling of the infrastructure.

Please, list the technical standards where requested and provide your answers where indicated as detailed as possible.

Respondent's Background Information

In the following respondent's background information regarding its institutional affiliation is collected. This information is personal data as defined in Art. 4 (1) of the General Data Protection Regulation (GDPR).

The information will be collected for research purposes in order to better understand where the expert's answers are emerging from. It will only be saved as long as necessary for the analysis of the questionnaires' results and deleted afterwards.

We kindly ask you to provide your voluntary consent to the processing of your personal data in accordance with Art. 6 (1) GDPR. You can withdraw your consent any time in accordance with Art. 7 (3) GDPR by contacting: ...

1. I agree that my personal data is used for research purposes within the USER-CHI project.

However, if you do not wish to provide personal data for research purposes you can skip this first section and continue with the questionnaire.

Yes/No

- 2. What is the name of the institution you represent?
- 3. What is your position in the institution?

4. How many years have you been working in the field of electric mobility at the institution you represent?

Location of Park & Charge services

CLICK provides expert and 'smart' analysis, advanced simulations, and scenario planning for enabling CPOs, e-mobility providers, and real-state facility providers to adjust their service provision to user's needs, mobility habits, and preferences. Based on a decision support tool, supported by live maps and GIS based information, CLICK seeks to provide a wider perspective of the electric vehicle (EV) chargers' network. The following questions address the technical requirements for routing and GIS tools.

5. What are the current standards for routing applications in your city/country?

6. What are the current standards for geographic information systems/geomatics in your city/country?

Product standards and electrical safety

USER-CHI product CLICK will analyse, among other inputs, type of EVs and connectors. In the following, therefore, questions regarding product standards concerning electrical safety of the charging infrastructure are asked. Please, mention the technical standards in your city/country regarding the following aspects:

7. Electrical equipment and conductive charging systems for electric vehicles

8. Safety and operation for wireless charging, electro-magnetic compatibility (EMC) and magnetic field emissions

- 9. Location of fire extinguishers
- 10. Fire alarm systems
- 11. Safety inspections of charging stations
- 12. Data security regarding charging infrastructure
- 13. Functional safety

Charging plug components for electro mobility

The USER-CHI project and its products, like the USER-CHI product CLICK, are in line with the European Commission's provisions aiming at ensuring uniform charging methods for EVs across the EU, expressed in the standardisation mandate M/468, which focuses on unifying charging

interfaces between the vehicle and the power supply grid. Therefore, the following questions deal with the technical standards for the plugs and cables enabling EV's charging.

14. Which are the plug and socket configurations required for AC charging in your city/country?

- Type 2
- CCS
- CHAdeMO
- Tesla Supercharger
- Other

15. If other, please name it.

16. Which are the plug and socket configurations required for DC charging in your city/country?

- Type 2
- CCS
- CHAdeMO
- Tesla Supercharger
- Other

17. If other, please name it.

18. What types of charging cables for charging electric cars are used in your city/country?

Hardware requirements for installed charging points

Due to the integration of the charging stations into an existing authentication system or the connection to an IT back end system, modifications of (standard) charging stations in which other IT systems or GSM components are usually installed may occur. In this case, the electrical safety of the entire system must be verified (if necessary, by means of inspection) and, if necessary, the replacement of components must be notified to the issuer of the certificate or the test documents for CE conformity. Please, mention the technical standards in your city/country regarding the following aspects:

19. Electronic equipment, e.g., components, in charging stations

20. Switch-gear (e.g. low voltage switch-gear, load-break switches, dis-connectors, switch-dis-connectors, and switch-fuse units)

21. Communication unit (e.g., modem, radio interfaces, etc.)

22. Electromagnetic tolerance (i.e., electromagnetic fields)

23. Installation, protection requirements and protection measures

24. How is it ensured that the communication between the charging infrastructure and the back end is secure? (IT security)

Safety and standard-compliant design of the mounting system (socket, pole, or wall-mount)

In the following, questions regarding the technical standards related to the build elements of the charging station are asked.

25. What are the technical standards for the built elements of the charging station, namely mounting system (socket, pole, or wall-mount)? Please mention the type of mounting system and list the existing standards in each case.

Testing of hardware/charging infrastructure

The following section asks questions regarding the considered standards for testing of hardware/charging infrastructure in your city/country. Please name the standard for the following environmental conditions:

- 26. Temperature change
- 27. Humid heat cyclic (12 + 12 hours) and constant (24 hours)
- 28. Hammer tests
- 29. Precipitation
- 30. Flood (resilience)
- 31. Storm
- 32. Electro-magnetic Compatibility (EMC)
- 33. Other

Technical records and documentation

In the following subsections questions regarding technical standards for records and documentation are asked. This section and sub-sections present crosscutting questions to all USER-CHI products.

34. What standards must the technical documentation meet in your country/city?

35. For how long should the documentation remain available in your city/country?

Technical Requirements for INCAR

USER-CHI Product INCAR | Technical Questionnaire

The aim of the USER-CHI project is to unlock the potential of transnational and inter-regional electromobility in Europe. Therefore, innovative solution will be integrated to achieve interoperability for users. This includes services such as e-roaming, billing, authentication, and reservations of parking slots with charging points. The user is put at the centre of this research. Moreover, the synergies between electromobility and smart grids will be fostered to contribute to the European energy transition.

The developed technological tools, and business models will be put into practice and demonstrated in five demonstration cities: Barcelona metropolitan area (Spain), Rome (Italy), Berlin (Germany), Budapest (Hungary), and Turku (Finland). Also, two replication cities have been included in each of the TEN-T corridors involved in the project: Murcia (Spain) in the Mediterranean corridor and Florence (Italy) in the Scandinavian-Mediterranean corridor.

Currently, different charging technologies and types of charging stations in public, semi-public, and private space exist. Hence, different requirements regarding local regulations and technical standards may apply. Publicly accessible charging infrastructure is subject to various EU, national, and local directives, regulations, technical safety requirements, and standards.

The aim of the questionnaire is to collect the technical standards that USER-CHI solutions should comply in all 5 USER-CHI partner countries and a set of at least 5 other relevant EU countries. The questionnaire will collect relevant technical standards for the implementation of USER-CHI products and will contribute to the deliverable D1.3 (Technical and Legal Requirements for USER-CHI Solutions) from a technical perspective.

The questionnaire focuses on the USER-CHI product SMAC (Smart Charging Tool) that will be developed and tested within the project. SMAC is a platform that provides smart grid integration services for slow, medium, fast, and ultra-fast charging by following the purpose of minimising the grid impact associated to the implementation of charging infrastructure. This smart charging tool will provide high-value services to electric vehicle (EV) drivers, such as minimum charging prices and maximum RES electricity supply, considering specific constraints that will be

prioritised in the charging sessions scheduling process. Aside from that, SMAC will provide standard and scalable solutions for demand management and smart grid integration services by integrating V2G and using EVs as dynamic distributed storage devises, feeding electricity stored in their batteries back into the local electric grid when needed. That will bring benefits to the DSOs concerning flexibility and stabilisation while reducing the grid impact of new charging infrastructure. A main aspect of the demand management in SMAC will be an interconnected route management system for incoming vehicles while considering the grid availability, voltage, and frequency control constraints in real-time. Furthermore, SMAC will deliver a smart interconnection with AC and DC-Networks to uncover new value streams that attract investors to boost the up-scaling of the infrastructure.

Please, list the technical standards where requested and provide your answers where indicated as detailed as possible.

Respondent's Background Information

In the following respondent's background information regarding its institutional affiliation is collected. This information is personal data as defined in Art. 4 (1) of the General Data Protection Regulation (GDPR).

The information will be collected for research purposes in order to better understand where the expert's answers are emerging from. It will only be saved as long as necessary for the analysis of the questionnaires' results and deleted afterwards.

We kindly ask you to provide your voluntary consent to the processing of your personal data in accordance with Art. 6 (1) GDPR. You can withdraw your consent any time in accordance with Art. 7 (3) GDPR by contacting: ...

5. I agree that my personal data is used for research purposes within the USER-CHI project.

However, if you do not wish to provide personal data for research purposes you can skip this first section and continue with the questionnaire.

Yes/No

- 6. What is the name of the institution you represent?
- 7. What is your position in the institution?
- 8. How many years have you been working in the field of electric mobility at the institution you represent?

Location of park & charge services

When it comes to electric mobility services for EVs, parking and charging services often go hand in hand. USER-CHI product INCAR aims at: offering booking features of parking slots and charging stations; searching and routing to EVSEs; and integration with rout planning of EV fleets. The following questions aim at collecting technical standards, or specific technical solutions regarding park & charge services and urban mobility planning aspects.

5. What are the current standards for routing applications in your city/country?

6. What are the current standards for geographic information systems/geomatics in your city/country?

Supply of electric energy for EVs charging infrastructure

Within the USER-CHI project, conductive and inductive charging technologies are to be implemented/tested. Moreover, conductive charging equipment is generally subject to the obligation of CE labelling. For the declaration of CE conformity, the product standards listed below, referring to general requirements, must be fully met. The respective product standard also refers to the general standards on electrical safety are listed below. Please, mention the technical standards in your city/country regarding the following aspects:

- 7. AC charging technologies
- 8. AC grid integration
- 9. DC charging technologies
- 10. DC grid integration
- 11. Public wireless charging

Product standards and electrical safety

In the following, questions regarding technical standards for safety are asked. Please, mention the technical standards in your city/country regarding the following aspects:

12. Equipment and conductive charging systems for electric vehicles

13. Safety and operation for wireless charging, electro-magnetic compatibility (EMC) and magnetic field emissions

- 14. Location of fire extinguishers
- 15. Fire alarm systems
- 16. Safety inspections of charging stations
- 17. Data security regarding charging infrastructure
- 18. Functional safety

Charging plug components for electro mobility

The USER-CHI project and its products are in line with the European Commission's provisions aiming at ensuring uniform charging methods for EVs across the EU, expressed in the standardisation mandate M/468, which focuses on unifying charging interfaces between the vehicle and the power supply grid. USER-CHI product INCAR will allow users to give their instant feedback regarding its charging experiences, where an expedited connection between vehicle and charging station plays a relevant role. Therefore, the following questions deal with the technical standards for the plugs and cables enabling EV 's charging.

19. Which are the plug and socket configurations required for AC charging in your city/country?

- Type 2
- CCS
- CHAdeMO
- Tesla Supercharger
- Other

20. If other, please name it.

21. Which are the plug and socket configurations required for DC charging in your city/country?

- Type 2
- CCS
- CHAdeMO
- Tesla Supercharger
- Other

22. If Other, please name it.

23. What types of charging cables for charging electric cars are used in your city/country?

Hardware requirements for installed charging points

Due to the integration of the charging stations into an existing authentication system or the connection to an IT back end system, modifications of (standard) charging stations in which other IT systems or GSM components are usually installed may occur. In this case, the electrical safety of the entire system must be verified (if necessary, by means of inspection) and, if necessary, the replacement of components must be notified to the issuer of the certificate or the test documents for CE conformity. Please, mention the technical standards in your city/country regarding the following aspects:

24. Electronic equipment, e.g., components, in charging stations

25. Switch-gear (e.g. low voltage switch-gear, load-break switches, dis-connectors, switch-dis-connectors, and switch-fuse units)

26. Communication unit (e.g., modem, radio interfaces, etc.)

- 27. Electromagnetic tolerance (i.e., electromagnetic fields)
- 28. Installation, protection requirements and protection measures

29. How is it ensured that the communication between the charging infrastructure and the back end is secure? (IT security)

Safety and standard-compliant design of the mounting system (socket, pole, or wall-mount)

In the following, questions regarding the technical standards related to the build elements of the charging station are asked.

30. What are the technical standards for the built elements of the charging station, namely mounting system (socket, pole, or wall-mount)? Please mention the type of mounting system and list the existing standards in each case.

Testing of hardware/charging infrastructure

The following section asks questions regarding the considered standards for testing of hardware/charging infrastructure in your city/country. Please name the standard for the following environmental conditions:

- 31. Temperature change
- 32. Humid heat cyclic (12 + 12 hours) and constant (24 hours)
- 33. Hammer tests

34. Precipitation

35. Flood (resilience)

36. Storm

37. Electro-magnetic Compatibility (EMC)

38. Other

Technical Communication

An accounting of the individual charging processes may be necessary for reasons related to the business model or for balancing and taxation aspects. The following subsections raise questions on this regard.

39. What are the current standards for acquisition of information about charging processes in your city/country?

40. What are the current standards for data management and interchange regarding booking and billing of charging services in your city/country?

41. What are the current standards for data sharing processes among providers of charging services in your city/country?

Communication protocols, eRoaming Platforms/ eMobility Service Providers (EMSPs)

USER-CHI product INCAR will offer innovative integrated EV-related services such as interoperability and roaming to access EVS within the different partner cities/countries and across them. Moreover, it is necessary for the various e-mobility service providers to have seamless communication in order to offer an effective service to the final user. The following subsections raise technical questions on this regard.

42. Which charging protocols are used in your city/country?

- OCPI (e.g., NKL Nederland)
- OCHP (e.g., eClearingNet)
- EMEP3 (e.g., Gireve)
- OICP (e.g., Hubject)

43. Are there any other charging protocols used in your city/country? If yes, please name it.

44. Which versions of the indicated charging protocols are used in your city/country?

Authorization and Authentication methods

To implement an interoperable system, technical standards for wireless authorisation and authentication must be implemented. USER-CHI product INCAR will offer booking features of parking slots and charging stations where end users should be able to log in by using the authorization and authentication methods given by their local EMSPs. Please indicate which of the following alternatives for user authentication are currently used in your city/country and mention under which technical standards.

45. Radio Frequency Identification (RFID) Card; if yes, which type?

- 46. Near-field communication (NFC) (e.g., via smartphone app)
- 47. Quick Response-Code (QR-Code)

48. Ad hoc charging/payment (authentication):

- Credit card, debit card
- Online money transfers
- Pay by phone bill
- Cash payment
- Virtual currencies (e.g., Bitcoins)

49. Are there any other?

Technical records and documentation

In the following subsections questions regarding technical standards for records and documentation are asked. This section and sub-sections present crosscutting questions to all USER-CHI products.

50. What standards must the technical documentation meet in your country/city?

51. For how long should the documentation remain available in your city/country?

Technical Requirements for SMAC

USER-CHI Product SMAC | Technical Questionnaire

The aim of the USER-CHI project is to unlock the potential of transnational and inter-regional electromobility in Europe. Therefore, innovative solution will be integrated to achieve interoperability for users. This includes services such as e-roaming, billing, authentication, and reservations of parking slots with charging points. The user is put at the centre of this research. Moreover, the synergies between electromobility and smart grids will be fostered to contribute to the European energy transition.

The developed technological tools, and business models will be put into practice and demonstrated in five demonstration cities: Barcelona metropolitan area (Spain), Rome (Italy), Berlin (Germany), Budapest (Hungary), and Turku (Finland). Also, two replication cities have been included in each of the TEN-T corridors involved in the project: Murcia (Spain) in the Mediterranean corridor and Florence (Italy) in the Scandinavian-Mediterranean corridor.

Currently, different charging technologies and types of charging stations in public, semi-public and private space exist. Hence, different requirements regarding local regulations and technical standards may apply. Publicly accessible charging infrastructure is subject to various EU, national, and local directives, regulations, technical safety requirements, and standards.

The aim of the questionnaire is to collect the technical standards that USER-CHI solutions should comply in all 5 USER-CHI partner countries and a set of at least 5 other relevant EU countries. The questionnaire will collect relevant technical standards for the implementation of USER-CHI products and will contribute to the deliverable D1.3 (Technical and Legal Requirements for USER-CHI Solutions) from a technical perspective.

The questionnaire focuses on the USER-CHI product SMAC (Smart Charging Tool) that will be developed and tested within the project. SMAC is a platform that provides smart grid integration services for slow, medium, fast, and ultra-fast charging by following the purpose of minimising the grid impact associated to the implementation of charging infrastructure. This smart charging tool will provide high-value services to electric vehicle (EV) drivers, such as minimum charging prices and maximum RES electricity supply, considering specific constraints that will be prioritised in the charging sessions scheduling process. Aside from that, SMAC will provide standard and scalable solutions for demand management and smart grid integration services by integrating V2G and using EVs as dynamic distributed storage devises, feeding electricity stored

in their batteries back into the local electric grid when needed. That will bring benefits to the DSOs concerning flexibility and stabilisation while reducing the grid impact of new charging infrastructure. A main aspect of the demand management in SMAC will be an interconnected route management system for incoming vehicles while considering the grid availability, voltage, and frequency control constraints in real-time. Furthermore, SMAC will deliver a smart interconnection with AC and DC-Networks to uncover new value streams that attract investors to boost the up-scaling of the infrastructure.

Please, list the technical standards where requested and provide your answers where indicated as detailed as possible.

Respondent's Background Information

In the following respondent's background information regarding its institutional affiliation is collected. This information is personal data as defined in Art. 4 (1) of the General Data Protection Regulation (GDPR).

The information will be collected for research purposes in order to better understand where the expert's answers are emerging from. It will only be saved as long as necessary for the analysis of the questionnaires' results and deleted afterwards.

We kindly ask you to provide your voluntary consent to the processing of your personal data in accordance with Art. 6 (1) GDPR. You can withdraw your consent any time in accordance with Art. 7 (3) GDPR by contacting: ...

9. I agree that my personal data is used for research purposes within the USER-CHI project.

However, if you do not wish to provide personal data for research purposes you can skip this first section and continue with the questionnaire.

Yes/No

- 10. What is the name of the institution you represent?
- 11. What is your position in the institution?
- 12. How many years have you been working in the field of electric mobility at the institution you represent?

Energy Sources | Power supply for Charging Infrastructure

Within the USER-CHI project different energy sources for powering the charging infrastructure are being implemented. Moreover, the USER-CHI product SMAC aims at providing smart grid integration services for slow, medium, fast, and ultrafast charging. Considering energy supply, specially the use of RES electricity supply, will enable SMAC to provide high-value services to electric vehicle (EV) drivers. The following sections to collect the existing technical standards in your city/country.

- How is the power supply of the charging infrastructure implemented in your city/country? (e.g., connection of the general power supply network, decentralized energy concept)
- Is charging infrastructure implemented as alternating current (AC) or direct current (DC) charging infrastructure in your country? Please name the main voltage and amperage in each case.
- 15. Are Vehicle to Grid (V2G) technologies being implemented/tested in your city/country? If so, under which technological standards?
- 16. Demand side management (DSM) aims to improve the flexibility of the energy system on the consumer side by encouraging final users to be more energy efficient. DSM encompasses many different technological measures, which can range from improving energy efficiency with better insulation materials to fully autonomous energy systems that automatically respond to shifts in supply and demand. Are there any DSM strategies applications being implemented in your city/country? If so, under which technological standards?

Technical Requirements of the grid operator and metering device operator

The technical requirements consider balanced load conditions and unacceptable grid effects or circuit feedback. Please, list below the technical standards in your city/country regarding the following aspects:

- 17. Grid connection
- 18. Electricity meter location
- 19. Circuit distributor

Technical Connection Rules (TCR)

D1.3: Technical and legal requirements for USER-CHI solutions

The TCR outline the essential issues to consider when connecting customer systems to the public utility grid. Moreover, the TCR contain important information on the operation of such systems. Please, mention the technical standards in your city/country regarding the following aspects:

20. What are the technical connection rules regarding charging infrastructure in your city/country?

Grid connection, provision of the grid connection and commissioning

The grid operator is responsible for providing, commissioning, and operating the grid connection. The metering point operator is responsible for the metering point (meter). The sub-distribution and remaining installation are to be carried out in connection with the installation of the charging point. The following sections to collect the existing technical standards in your city/country.

- 21. Which technical connection conditions apply to the metering point operator regarding charging infrastructure in your city/country?
- 22. Are there any other applicable standards, depending on the components and assemblies, that are relevant to consider in your city/country? E.g. definition of voltages and voltage ranges, switch cabinets, and switch-gear combinations.

Location of Park & Charge services

When it comes to electric mobility services for electric vehicle (EV), parking and charging services often go hand in hand. The USER-CHI product SMAC aims at providing high-value services to EV drivers, e.g. minimum charging prices; it is therefore relevant to EV drivers to know the location of best alternatives for charging stations in their city. The following questions aim at collecting technical standards, or specific technical solutions regarding park & charge services and urban mobility planning aspects.

- 23. What are the current standards for routing applications in your city/country?
- 24. What are the current standards for geographic information systems/geomatics in your city/country?

Types of energy supply for EVs' charging infrastructure

Within the USER-CHI project, conductive and inductive charging technologies are to be implemented/tested. Moreover, conductive charging equipment is generally subject to the obligation of CE labelling. For the declaration of CE conformity, the product standards listed below, referring to general requirements, must be fully met.

The respective product standard also refers to the general standards on electrical safety are listed below. Please, mention the technical standards in your city/country regarding the following aspects:

- 25. AC charging technologies
- 26. AC grid integration
- 27. DC charging technologies
- 28. DC grid integration
- 29. Public wireless charging

Product standards and safety

In the following, questions regarding technical standards for safety are asked. Please, mention the technical standards in your city/country regarding the following aspects:

- 30. Equipment and conductive charging systems for electric vehicles
- 31. Safety and operation for wireless charging, electro-magnetic compatibility (EMC) and magnetic field emissions
- 32. Location of fire extinguishers
- 33. Fire alarm systems
- 34. Safety inspections of charging stations
- 35. Data security regarding charging infrastructure
- 36. Functional safety

Charging plug components for electromobility

The USER-CHI project and its products are in line with the European Commission's provisions aiming at ensuring uniform charging methods for EVs across the EU, expressed in the standardisation mandate M/468, which focuses on unifying charging interfaces between the vehicle and the power supply grid. USER-CHI product SMAC will provide high-value service to EV drivers, where an expedited connection between vehicle and charging station plays a relevant role Therefore, the following questions deal with the technical standards for the plugs and cables enabling EV's charging.

- 37. Which are the plug and socket configurations required for AC charging in your city/country?
- Type 2
- CCS
- CHAdeMO
- Tesla Supercharger
- Other
- 38. If other, please name it.
- 39. Which are the plug and socket configurations required for DC charging in your city/country?
- Type 2
- CCS
- CHAdeMO
- Tesla Supercharger
- Other
- 40. If other, please name it.
- 41. What types of charging cables for charging electric cars are used in your city/country?

Hardware requirements for installed charging points

Due to the integration of the charging stations into an existing authentication system or the connection to an IT back end system, modifications of (standard) charging stations in which other IT systems or GSM components are usually installed may occur. In this case, the electrical safety of the entire system must be verified (if necessary, by means of inspection) and, if necessary, the replacement of components must be notified to the issuer of the certificate or the test documents for CE conformity. Please, mention the technical standards in your city/country regarding the following aspects:

- 42. Electronic equipment, e.g., components, in charging stations
- 43. Switch-gear (e.g. low voltage switch-gear, load-break switches, disconnectors, switch-disconnectors, and switch-fuse units)
- 44. Communication unit (e.g., modem, radio interfaces, etc.)

- 45. Electromagnetic tolerance (i.e., electromagnetic fields)
- 46. Installation, protection requirements and protection measures
- 47. How is it ensured that the communication between the charging infrastructure and the back end is secure? (IT security)

Safety and standard-compliant design of the mounting system (socket, pole, or wall-mount)

in the following, questions regarding the technical standards related to the build elements of the charging station are asked.

48. What are the technical standards for the built elements of the charging station, namely mounting system (socket, pole, or wall-mount)? Please mention the type of mounting system and list the existing standards in each case.

Testing of hardware/charging infrastructure

The following section asks questions regarding the considered standards for testing of hardware/charging infrastructure in your city/country. Please name the standard for the following environmental conditions:

- 49. Temperature change
- 50. Humid heat cyclic (12 + 12 hours) and constant (24 hours)
- 51. Hammer tests
- 52. Precipitation
- 53. Flood (resilience)
- 54. Storm
- 55. Electro-magnetic Compatibility (EMC)
- 56. Other

Technical records and documentation

In the following subsections questions regarding technical standards for records and documentation are asked. This section and sub-sections present crosscutting questions to all USER-CHI products.

57. What standards must the technical documentation meet in your city/ country?

58. For how long should the documentation remain available in your city/country?

Technical Requirements for INDUCAR

USER-CHI Product INDUCAR | Technical Questionnaire

The aim of the USER-CHI project is to unlock the potential of transnational and inter-regional electromobility in Europe. Therefore, innovative solution will be integrated to achieve interoperability for users. This includes services such as e-roaming, billing, authentication, and reservations of parking slots with charging points. The user is put at the centre of this research. Moreover, the synergies between electromobility and smart grids will be fostered to contribute to the European energy transition.

The developed technological tools, and business models will be put into practice and demonstrated in five demonstration cities: Barcelona metropolitan area (Spain), Rome (Italy), Berlin (Germany), Budapest (Hungary), and Turku (Finland). Also, two replication cities have been included in each of the TEN-T corridors involved in the project: Murcia (Spain) in the Mediterranean corridor and Florence (Italy) in the Scandinavian-Mediterranean corridor.

Currently, different charging technologies and types of charging stations in public, semi-public and private space exist. Hence, different requirements regarding local regulations and technical standards may apply. Publicly accessible charging infrastructure is subject to various EU, national, and local directives, regulations, technical safety requirements, and standards.

The aim of the questionnaire is to collect the technical standards that USER-CHI solutions should comply in all 5 USER-CHI partner countries and a set of at least 5 other relevant EU countries. The questionnaire will collect relevant technical standards for the implementation of USER-CHI products and will contribute to the deliverable D1.3 (Technical and Legal Requirements for USER-CHI Solutions) from a technical perspective.

The questionnaire focuses on the USER-CHI product SMAC (Smart Charging Tool) that will be developed and tested within the project. SMAC is a platform that provides smart grid integration services for slow, medium, fast, and ultra-fast charging by following the purpose of minimising the grid impact associated to the implementation of charging infrastructure. This smart charging tool will provide high-value services to electric vehicle (EV) drivers, such as minimum charging prices and maximum RES electricity supply, considering specific constraints that will be prioritised in the charging sessions scheduling process. Aside from that, SMAC will provide standard and scalable solutions for demand management and smart grid integration services by integrating V2G and using EVs as dynamic distributed storage devises, feeding electricity stored in their batteries back into the local electric grid when needed. That will bring benefits to the DSOs concerning flexibility and stabilisation while reducing the grid impact of new charging infrastructure. A main aspect of the demand management in SMAC will be an interconnected route management system for incoming vehicles while considering the grid availability, voltage, and frequency control constraints in real-time. Furthermore, SMAC will deliver a smart interconnection with AC and DC-Networks to uncover new value streams that attract investors to boost the up-scaling of the infrastructure.

Please, list the technical standards where requested and provide your answers where indicated as detailed as possible.

Respondent's Background Information

In the following respondent's background information regarding its institutional affiliation is collected. This information is personal data as defined in Art. 4 (1) of the General Data Protection Regulation (GDPR).

The information will be collected for research purposes in order to better understand where the expert's answers are emerging from. It will only be saved as long as necessary for the analysis of the questionnaires' results and deleted afterwards.

We kindly ask you to provide your voluntary consent to the processing of your personal data in accordance with Art. 6 (1) GDPR. You can withdraw your consent any time in accordance with Art. 7 (3) GDPR by contacting: ...

1. I agree that my personal data is used for research purposes within the USER-CHI project.

However, if you do not wish to provide personal data for research purposes you can skip this first section and continue with the questionnaire.

Yes/No

- 2. What is the name of the institution you represent?
- 3. What is your position in the institution?
- 4. How many years have you been working in the field of electric mobility at the institution you represent?

Location of park & charge services

When it comes to electric mobility services for electric vehicle (EV), parking and charging services often go hand in hand. Since the USER-CHI product INDUCAR seeks to enable wireless charging technology for EVs' users, it is relevant for EVs' users to know the availability of this technology within each city. The following questions aim at collecting technical standards, or specific technical solutions regarding park & charge services and urban mobility planning aspects.

5. What are the current standards for routing applications in your city/country?

6. What are the current standards for geographic information systems/geomatics in your city/country?

Supply of electric energy for electric vehicle (EV) charging infrastructure

Within the USER-CHI project, conductive and inductive charging technologies are to be implemented/tested. Moreover, conductive charging equipment is generally subject to the obligation of CE labelling. For the declaration of CE conformity, the product standards listed below, referring to general requirements, must be fully met. The respective product standard also refers to the general standards on electrical safety are listed below. Please, mention the technical standards in your city/country regarding the following aspects:

- 7. AC charging technologies
- 8. AC grid integration
- 9. DC charging technologies
- 10. DC grid integration
- 11. Public wireless charging

Product standards and safety

In the following, questions regarding technical standards for safety are asked. Please, mention the technical standards in your city/country regarding the following aspects:

12. Equipment and conductive charging systems for electric vehicles

13. Safety and operation for wireless charging, electro-magnetic compatibility (EMC) and magnetic field emissions

- 14. Location of fire extinguishers
- 15. Fire alarm systems
- 16. Charging infrastructure and electrical systems
- 17. Safety inspections of charging stations
- 18. Data security regarding charging infrastructure
- 19. Functional safety

Hardware requirements for installed charging points

Due to the integration of the charging stations into an existing authentication system or the connection to an IT back end system, modifications of (standard) charging stations in which other IT systems or GSM components are usually installed may occur. In this case, the electrical safety of the entire system must be verified (if necessary, by means of inspection) and, if necessary, the replacement of components must be notified to the issuer of the certificate or the test documents for CE conformity. Please, mention the technical standards in your city/country regarding the following aspects:

20. Electronic equipment, e.g., components, in charging stations

21. Switch-gear (e.g. low voltage switch-gear, load-break switches, dis-connectors, switch-dis-connectors, and switch-fuse units)

22. Communication unit (e.g., modem, radio interfaces, etc.)

23. Electromagnetic tolerance (i.e., electromagnetic fields)

24. Installation, protection requirements and protection measures

25. How is it ensured that the communication between the charging infrastructure and the back end is secure? (IT security)

Safety and standard-compliant design of the mounting system (socket, pole, or wall-mount)

In the following, questions regarding the technical standards related to the build elements of the charging station are asked.

26. What are the technical standards for the built elements of the charging station, namely mounting system (socket, pole, or wall-mount)? Please mention the type of mounting system and list the existing standards in each case.

Testing of hardware/charging infrastructure

The following section asks questions regarding the considered standards for testing of hardware/charging infrastructure in your city/country. Please name the standard for the following environmental conditions:

- 27. Temperature change
- 28. Humid heat cyclic (12 + 12 hours) and constant (24 hours)
- 29. Hammer tests
- 30. Precipitation
- 31. Flood (resilience)
- 32. Storm
- 33. Electro-magnetic Compatibility (EMC)
- 34. Other

Technical records and documentation

In the following subsections questions regarding technical standards for records and documentation are asked. This section and sub-sections present crosscutting questions to all USER-CHI products.

- 35. What standards must the technical documentation meet in your country/city?
- 36. For how long should the documentation remain available in your city/country?

Technical Requirements for INSOC

USER-CHI Product INSOC | Technical Questionnaire

The aim of the USER-CHI project is to unlock the potential of transnational and inter-regional electromobility in Europe. Therefore, innovative solution will be integrated to achieve interoperability for users. This includes services such as e-roaming, billing, authentication, and reservations of parking slots with charging points. The user is put at the centre of this research. Moreover, the synergies between electromobility and smart grids will be fostered to contribute to the European energy transition.

The developed technological tools, and business models will be put into practice and demonstrated in five demonstration cities: Barcelona metropolitan area (Spain), Rome (Italy), Berlin (Germany), Budapest (Hungary), and Turku (Finland). Also, two replication cities have been included in each of the TEN-T corridors involved in the project: Murcia (Spain) in the Mediterranean corridor and Florence (Italy) in the Scandinavian-Mediterranean corridor.

Currently, different charging technologies and types of charging stations in public, semi-public and private space exist. Hence, different requirements regarding local regulations and technical standards may apply. Publicly accessible charging infrastructure is subject to various EU, national, and local directives, regulations, technical safety requirements, and standards.

The aim of the questionnaire is to collect the technical standards that USER-CHI solutions should comply in all 5 USER-CHI partner countries and a set of at least 5 other relevant EU countries. The questionnaire will collect relevant technical standards for the implementation of USER-CHI products and will contribute to the deliverable D1.3 (Technical and Legal Requirements for USER-CHI Solutions) from a technical perspective.

The questionnaire focuses on the USER-CHI product SMAC (Smart Charging Tool) that will be developed and tested within the project. SMAC is a platform that provides smart grid integration services for slow, medium, fast, and ultra-fast charging by following the purpose of minimising the grid impact associated to the implementation of charging infrastructure. This smart charging tool will provide high-value services to electric vehicle (EV) drivers, such as minimum charging prices and maximum RES electricity supply, considering specific constraints that will be prioritised in the charging sessions scheduling process.

Aside from that, SMAC will provide standard and scalable solutions for demand management and smart grid integration services by integrating V2G and using EVs as dynamic distributed storage devises, feeding electricity stored in their batteries back into the local electric grid when needed. That will bring benefits to the DSOs concerning flexibility and stabilisation while reducing the grid impact of new charging infrastructure. A main aspect of the demand management in SMAC will be an interconnected route management system for incoming vehicles while considering the grid availability, voltage, and frequency control constraints in real-time. Furthermore, SMAC will deliver a smart interconnection with AC and DC-Networks to uncover new value streams that attract investors to boost the up-scaling of the infrastructure.

Please, list the technical standards where requested and provide your answers where indicated as detailed as possible.

Respondent's Background Information

In the following respondent's background information regarding its institutional affiliation is collected. This information is personal data as defined in Art. 4 (1) of the General Data Protection Regulation (GDPR).

The information will be collected for research purposes in order to better understand where the expert's answers are emerging from. It will only be saved as long as necessary for the analysis of the questionnaires' results and deleted afterwards.

We kindly ask you to provide your voluntary consent to the processing of your personal data in accordance with Art. 6 (1) GDPR. You can withdraw your consent any time in accordance with Art. 7 (3) GDPR by contacting: ...

1. I agree that my personal data is used for research purposes within the USER-CHI project.

However, if you do not wish to provide personal data for research purposes you can skip this first section and continue with the questionnaire.

Yes/No

- 2. What is the name of the institution you represent?
- 3. What is your position in the institution?
- 4. How many years have you been working in the field of electric mobility at the institution you represent?

Energy supply for LEVs charging box – Photovoltaic (PV) systems

Within the USER-CHI project different energy sources for powering the charging infrastructure are being implemented. The USER-CHI product INSOC consist of a hybrid PV-powered charging box for LEVs combined with local grid power supply. Therefore, the following sections aim to collect the existing technical standards in your city/country in this area.

5. How is the power supply of the charging infrastructure for LEVs implemented in your city/country? (e.g., connection of the general power supply network)

6. Are decentralized power supply systems, such as photovoltaic low-power DC charging infrastructure for LEVs, implemented your city/country? If so, under which technological standards?

7. Which are the technological standards for the photovoltaic system performance monitoring in your city/country?

8. Is there any experience regarding energy trading involving PV systems and energy service providers in your city/country? If yes, please mention the technical standards for equipment for electrical energy measurement (smart meter) and load control.

Technical requirements of the grid operator and metering device operator

The requirements consider balanced load conditions and unacceptable grid effects or circuit feedback. Please, list below the technical standards in your city/country regarding the following aspects:

9. Grid connection

10. Electricity meter location

11. Circuit distributor

Energy Storage

To ensure the provision of energy for charging LEVs, the USER-CHI product INSOC also considers an energy storage system. The system accumulates solar energy which, in case there is excess energy in the system, it could be transferred into the local grid. On the other hand, the system could accumulate energy from the local network during low demand hours (low price) to allow charging LEVs at a convenient price. The following questions ask for the technical standards in the field.

12. Are there any DC-coupled storage systems for PV systems implemented in your city/country? If so, under which technological standards?

13. In order to get the most life from a solar battery used in PV systems, it must be discharged and recharged properly. Against which performance measures are the batteries measured in your country/city?

Location of LEVs charging infrastructure

When it comes to electric mobility services for LEVs, parking and charging services could go hand in hand. Moreover, INSOC seeks to integrate park & charge with payment & billing services, making it especially convenient for new urban mobility offers, such as e-bike and e-scooter sharing services, while enabling a thief-proof storage of LEVs. The USER-CHI product INSOC seeks to enable users of a LEV sharing service to access real-time information on the availability of parking and charging services in their cities. Based on online mapping tools a wider perspective of the LEV chargers' network is provided. The following questions address the technical requirements for routing and GIS tools.

14. What are the current standards for routing applications in your city/country?

15. The information analysed by online mapping tools could be originated in different sources; for enabling a proper integration in the system, standardization it is necessary. What are the current standards for geographic information systems/geomatics in your city/country?

Technical connection rules

The Technical Connection Rules (TCR) outline the essential issues to consider when connecting customer systems to the public utility grid. Moreover, the TCR contain important information on the operation of such systems. Please, mention the technical standards in your city/country regarding the following aspects:

16. What are the technical connection rules regarding charging infrastructure in your city/country?

Grid connection, provision of the grid connection and commissioning

The grid operator is responsible for providing, commissioning, and operating the grid connection. The metering point operator is responsible for the metering point (meter).

The sub-distribution and remaining installation are to be carried out in connection with the installation of the charging point. The following sections to collect the existing technical standards in your city/country.

17. Which technical connection conditions apply to the metering point operator regarding charging infrastructure in your city/country?

18. Are there any other applicable standards, depending on the components and assemblies, that are relevant to consider in your city/country? E.g., definition of voltages and voltage ranges, switch cabinets, and switch-gear combinations.

Supply of electric energy for electric vehicles (EVs) charging infrastructure

Within the USER-CHI project, **conductive and inductive charging** technologies are to be implemented/tested. Moreover, conductive charging equipment is generally subject to the obligation of CE labelling. For the declaration of CE conformity, the product standards listed below, referring to general requirements, must be fully met. The respective product standard also refers to the general standards on electrical safety are listed below. Please, mention the technical standards in your city/country regarding the following aspects:

- 19. AC grid integration
- 20. DC charging technologies

Product standards and electrical safety

In the following, questions regarding technical standards for safety are asked. Please, mention the technical standards in your city/country regarding the following aspects:

- 21. Equipment and conductive charging systems for electric vehicles
- 22. Location of fire extinguishers
- 23. Fire alarm systems
- 24. Safety inspections of charging stations
- 25. Data security regarding charging infrastructure
- 26. Functional safety

Charging plug components for LEVs charging

The USER-CHI project and its products are in line with the European Commission's provisions aiming at ensuring uniform charging methods for EVs across the EU, expressed in the standardization mandate M/468, which focuses on unifying charging interfaces between the vehicle and the power supply grid. Therefore, the following questions deal with the technical standards for the plugs and cables enabling EV's charging.

27. Which are the plug and socket configurations required for DC charging of LEVs in your city/country?

28. What types of charging cables for charging electric cars are used in your city/country?

Hardware requirements for installed LEVs charging box

Due to the integration of the charging stations into an existing authentication system or the connection to an IT back end system, modifications of (standard) LEVs charging stations in which other IT systems or GSM components are usually installed may occur. In this case, the electrical safety of the entire system must be verified (if necessary, by means of inspection) and, if necessary, the replacement of components must be notified to the issuer of the certificate or the test documents for CE conformity. Please, mention the technical standards in your city/country regarding the following aspects:

29. Electronic equipment used in the LEVs charging box (e.g. components, charger controllers with digital display, solar hybrid Inverter, etc.)

30. Switch-gear (e.g. low voltage switch-gear, load-break switches, dis-connectors, switch-dis-connectors, and switch-fuse units)

31. Communication unit (e.g., modem, radio interfaces, etc.)

32. Electromagnetic tolerance (i.e., electromagnetic fields)

33. Installation, protection requirements and protection measures

34. How is it ensured that the communication between the charging infrastructure and the back end is secure? (IT security)

Safety and standard-compliant design of the LEVs charging Box (Box envelope, PV Module)

In the following, questions regarding the technical standards related to the build elements of the LEVs charging station are asked.

35. What are the technical standards for the structural envelope of the LEV box? Are there any standards regarding the minimum dimensions of the box, materials, or any other construction requirements?

36. What are the technical standards for the photovoltaic generator (PV Modules)?

- 37. What are the technical standards for the module support structure
- 38. What are the technical standards for charge regulator
- 39. What are the technical standards for the system installation and wiring?
- 40. What are the technical standards for the grounding and lightning protection?

Testing of the LEV box hardware components

The following section asks questions regarding the considered standards for testing of hardware/charging infrastructure in your city/country for ensuring the LEV box's technical operation safety. Please name the standard for the following environmental conditions:

- 41. Temperature change
- 42. Humid heat cyclic (12 + 12 hours) and constant (24 hours)
- 43. Hammer tests
- 44. Precipitation
- 45. Flood (resilience)
- 46. Storm
- 47. Electro-magnetic Compatibility (EMC)

48. Are there any other requirements? For example: guidelines on how to end the charging process and mechanisms to unlock the charging cable given by the authorities; automatic interruption/end of the charging process (by the operator) for grid stabilisation, after exceeding a certain time threshold.

Booking & Billing

An accounting of the individual charging processes may be necessary for reasons related to the business model or for balancing and taxation aspects. Moreover, the LEVs considered within the USER-CHI product INSOC are offered by local E-mobility sharing service providers.

In the following, questions regarding technical standards for booking and billing of such services and the interactions within the communication system are asked.

49. What are the current standards for data management and interchange regarding booking and billing of charging services for LEVs in your city/country?

50. What are the current standards for data sharing processes among providers of charging services in your city/country? E.g., between the grid operator, different service providers for e-bike or e-scooter sharing services.

Communication protocols

USER-CHI product INSOC will offer innovative services for LEV such booking and parking within the different partner cities/countries and across them. Moreover, it is necessary for the various LEV sharing service providers to have seamless communication in order to offer an effective service to the final user. The following subsections raise technical questions on this regard.

51. Which charging protocols are used in your city/country?

- OCPI (e.g., NKL Nederland)
- OCHP (e.g., eClearingNet)
- EMEP3 (e.g., Gireve)
- OICP (e.g., Hubject)

52. Which versions of the indicated charging protocols are used in your city/country?

Authorization and authentication methods

To implement an interoperable system, technical standards for wireless authorisation and authentication for LEVs charging stations must be implemented. Please indicate which of the following alternatives for user authentication for providers for e-bike or e-scooter sharing services are currently used in your city/country and mention under which technical standards.

53. Radio Frequency Identification (RFID) Card; if yes, which type?

54. Near-field communication (NFC) (e.g., via smartphone app)

55. Quick Response-Code (QR-Code)

56. Ad hoc charging/payment (authentication):

- Credit card, debit card
- Online money transfers
- Pay by phone bill
- Cash payment
- Virtual currencies (e.g., Bitcoins)

57. Are there any other?

Technical records and documentation

In the following subsections questions regarding technical standards for records and documentation are asked. This section and sub-sections present crosscutting questions to all USER-CHI products.

58. What standards must the technical documentation meet in your country/city?

59. For how long should the documentation remain available in your city/country?

239 D1.3: Technical and legal requirements for USER-CHI solutions Legal Questionnaire

Legal Requirements for USER-CHI Solutions

USER-CHI Project

The aim of USER-CHI is to unlock the potential of transnational and inter-regional electromobility in Europe. Therefore, different charging technologies will be integrated to achieve interoperability for users. This process includes, for example, charging technologies, e-roaming, billing, authentication, and reservations of parking slots in front of charging infrastructure.

Moreover, the synergies between electromobility and smart grids will be fostered to contribute to the European energy transition. The developed technological tools, and business models will be put into practice and demonstrated in five areas: Barcelona metropolitan area (Spain), Rome (Italy), Berlin (Germany), Budapest (Hungary), and Turku (Finland).

Besides, replication cities have been included in each of the Trans-European Transport Network (TEN-T) corridors involved in the project: Murcia (Spain) in the Mediterranean corridor and Florence (Italy) in Scandinavian-Mediterranean corridor.

QUESTIONNAIRE

This questionnaire will contribute to the deliverable D1.3 (Technical and Legal Requirements for USER-CHI Solutions) from a legal perspective. Concrete technical requirements will be collected by means of a different questionnaire.

The following questions refer to technical products, which will be developed and implemented during USER-CHI, such as:

- a) CLICK-Charging Location and Holistic Planning Kit,
- b) INCAR Interoperability, Charging and Parking Platform
- c) SMAC Smart Charging Tool and
- d) INDUCAR Inductive Charging for e-Cars.

D1.3: Technical and legal requirements for USER-CHI solutions e) INSOC - Integrated Solar DC-Charging for LEVs

AIM OF THE QUESTIONNAIRE

The aim of the questionnaire is to collect the legal standards that USER-CHI solutions must meet in all five partner countries and a set of at least five other relevant EU countries. The questionnaire will collect relevant legal standards for the implementation of USER-CHI products dealing with electric vehicles (EVs) charging infrastructure.

There are several fields of law, which influence the expansion of charging infrastructure for electric vehicles. The areas of law range from construction and planning law, road traffic law (reservation of parking spots in public spaces), energy law (energy supply to charging point, grid connection, requirements for network operator in regard to network stability), calibration law (billing models, roaming-platforms) as well as data protection law and data security (authentication processes / handling of personal data).

The legal requirements may vary in accordance with different types of charging infrastructure and business models in public, semi-public, or private spaces. Moreover, the legal requirements derive from European, as well as national laws.

Furthermore, the link between technical standards and the legal framework arises through references within the applicable legal texts. In general, technical standards are not legally binding and are applied by parties on a voluntary basis or contractual obligation under private law. However, in cases where European or national regulations explicitly refer to technical standards, they become legally binding.

This questionnaire aims at mapping out especially requirements set up by national laws indicated by experts. A variety of answers will provide relevant information for more than one of the USER-CHI products. However, they will only be raised once where similar answers are anticipated in order to prevent repetitions.

Therefore, we kindly ask you to provide all possible answers to the different USER-CHI products, even though they might not be implemented at your demo site.

RESPONDENT'S BACKGROUND INFORMATION

In the following respondent's background information regarding its institutional affiliation is collected. This information is personal data as defined in Art. 4 (1) GDPR.

240

D1.3: Technical and legal requirements for USER-CHI solutions

The information will be collected for research purposes in order to better understand where the expert's answers are emerging from. It will only be saved as long as necessary for the analysis of the questionnaires' results and deleted afterwards.

We kindly ask you to provide your voluntary consent to the processing of your personal data in accordance with Art. 6 (1) GDPR. You can withdraw your consent any time in accordance with Art. 7 (3) GDPR by contacting: ...

(....) I agree that my personal data is used for research purposes within the USER-CHI project

However, if you do not wish to provide personal data for research purposes you can skip this first section and continue with the questionnaire.

- 1. What is the name of the institution you represent?
- 2. What is your position in the institution?
- 3. How many years have you been working in the field of electromobility at the institution you represent?

CLICK - CHARGING LOCATION AND HOLISTIC PLANNING KIT

CLICK will support administrators within the process of top-down location planning for charging infrastructure in cities and the TEN-T corridors. Building upon an application used by Rome Mobility Agency (RSM), it will serve as a question-and-answer online tool considering user's needs and habits in regard of charging technologies. The results generated by CLICK will address exact proposed locations, preferred technologies as well as the number of charging points needed, amongst other factors.

Moreover, CLICK will enable a post-planning monitoring process by offering interfaces to be fed with actual utilization of data of electric vehicle supply equipment (EVSE) This will trigger the demand-oriented expansion of the charging infrastructure network.

Building and construction law:

Building and construction law plays a relevant role for the planning and building phase of infrastructure for EVs. Therefore, the following section will address requirements deriving from this field of law.

- D1.3: Technical and legal requirements for USER-CHI solutions
 - Which permissions are needed for the construction of charging points (AC and DC) in public spaces and private spaces under national building and construction laws? If none are needed, please indicate this as well.
 - 2. Which public authorities or public bodies are involved in the administrative process in regard to the installation of charging points? On which level are the involved authorities located in the administrative structure and what are their competences?
 - 3. Please describe the steps that are included in the administrative approval process (e.g., building/planning permission, registration of a grid connection, ...).
 - 4. Are there any laws regulating the construction and operation of charging infrastructure? E.g., fostering non-proprietary technical solutions in charging, sockets, and plugs?
 - 5. Which requirements must be met by the construction of charging points (AC and DC) in regard to fire protection provisions on a national / local level?
 - 6. Are local provisions on the preservation of historical monuments in force, which might oppose the construction of charging points in certain public or private spaces?
 - 7. With regard to new non-residential buildings and non-residential buildings undergoing major renovation, which measures were implemented to ensure the installation of at least one charging point according to Art. 8 (2) of the EPBD-Directive (2018/844/EU)?
 - Are there national implementation laws regarding Art. 8 (5) of the EPBD Directive (2018/844/EU), which ensure that new residential buildings install charging infrastructure for electric-vehicles in the applicable scope?
 - 9. Did your country already lay down requirements for the installation of a minimum number of charging points for existing non-residential buildings with more than twenty parking spaces in accordance to Art. 8 (3) of the EPBD Directive (2018/844/EU)?

Alternative Fuels Infrastructure Directive:

The implementation of the AFI-Directive (2014/94/EU) into the national legal framework ensures interoperability and the goal of non-discriminatory access to public charging infrastructure European-wide. Therefore, it plays an important role for the development of CLICK.

242

D1.3: Technical and legal requirements for USER-CHI solutions

- 10. Which measures were taken for the implementation of the AFI-Directive (2014/94/EU) into the national legal framework? Are the adopted measures sufficient to fulfil the obligation to implement the directives or is the implementation still incomplete?
- 11. Is there an obligation to report the building and decommissioning of charging points for operators of charging points to authorities? If yes, under which national laws are they obliged to do so and to whom?
- 12. How is the goal of non-discriminatory access to public charging infrastructure (for users as well as for electricity suppliers; see Art. 2 No. 7, Art. 4 No. 8-11 AFI-Directive) implemented in national regulations?
- 13. Are there any rules implemented in order to guarantee that EV-drivers are able to charge their vehicle without previously having to conclude a contract with the charging point operator (CPO) in accordance to Art. 4 No. 9 AFI-Directive?
- 14. Are there any national rules regulating tariff models for the use of public charging infrastructure?
- 15. Has your country implemented laws to ensure interoperability of charging infrastructure run by different CPOs?

Procurement Law, concession law and subsidies:

The topic of procurement and concession law is important for CLICK, as the development of charging infrastructure by companies could include the procurement or concession. Moreover, the development of charging infrastructure is often subsidized.

- 16. Which measures were taken for the implementation of Directive 2014/24/EU (Public procurement) into the national legal framework?
- 17. Which measures were taken for the implementation of Directive 2014/25/EU (on procurement by entities operating in the water, energy, transport and postal services sector) directives into the national legal framework?
- 18. Which measures were taken for the implementation of Directive 2014/23/EU (Awarding of concession contracts) into the national legal framework?
- 19. Are there any public subsidy directives to promote charging infrastructure, e.g. by national or local authorities?

- D1.3: Technical and legal requirements for USER-CHI solutions If yes, is the granting of the relevant subsidies tied to any conditions? How are these subsidies granted (e.g. financial aid, tax privileges)?
 - 20. Are there any rules belonging to the public procurement law to regulate the assignment of constructing charging infrastructure?

Please also mention any national programs, which are legally binding like ordinances, but have not undergone a formal, legislative procedure.

21. Directive 2014/24/EU, which deals with requirements for public procurements processes, lays down thresholds for public procurements in order for the Directive to apply (Art. 4 Directive 2014/24/EU).

Are there national thresholds, which differ from the European thresholds, indicating that no procurement rules have to be taken into consideration at all?

If yes, what are the amounts? Are they the same country-wide or do they differ from region to region? If they differ on a local level – please indicate the different amounts as well.

22. Did your country ratify the WTO-GPA (Agreement on Government Procurement)?

If yes, has your country ratified the revised agreement version (2014) of the GPA yet? What are the main impacts on your national and local legislation?

Energy Law:

The topic of energy law raises important legal requirements as the connection to the electricity grid is mandatory for charging infrastructure.

23. Which EU electrical safety regulations are applicable to the installation / operation of charging points for electric vehicles in your city/country?

Mobility planning:

The topic of mobility planning can influence the development of charging infrastructure. The concept of sustainable urban mobility plans (SUMP) is recommended by the European Commission.

24. Has a SUMP been implemented in your city?

D1.3: Technical and legal requirements for USER-CHI solutions

If yes, what are the relevant regional, national and European legal requirements for the SUMP, which were identified within the preparation process and what is the political framework for the topic of charging points for electric vehicles?

Public, civil, or stakeholder participation:

The topic of public, civil, or stakeholder participation can play an important role in the planning process of charging infrastructure. Therefore, the following questions are aimed at providing information on the regulatory framework on the topic in your country.

- 25. Is public participation mandatory by national or local laws during the authorisation procedure regarding charging infrastructure in public spaces?
- 26. Where is public participation determined in the regulatory framework and what does it entail?

If it is not determined by law, is it addressed elsewhere or usually undertaken on a voluntary basis?

27. Please describe the outcome of the participation. Is it binding or is the result of a mere recommendation?

Tender specifications:

Tender specifications could be designed by your city / municipality in the process of the development of charging infrastructure.

28. Do the tender specifications of your city / municipality for charging stations demand stronger minimum standards concerning e.g. interoperability or safety requirements, e.g. fire protection, for CPOs compared to the framework of existing European or national legislations?

If yes, please describe examples where the tender specification requires additional requirements for CPOs, such as "instructions for users at charging points", or the use of certain data protocols.

Legal framework regulating road use

The regulatory framework for road use could determine legal requirements for charging infrastructure in public spaces.

D1.3: Technical and legal requirements for USER-CHI solutions

29. Are there any permissions needed under road use regulation in order to set up charging infrastructure in public spaces?

If yes, which authority is responsible for issuing the permission? Please indicate the national / regional legal basis.

30. Are they any permissions needed in order to set up charging infrastructure in public spaces, which derive from neither national construction law nor road use law?

INCAR - INTEROPERABILITY, CHARGING AND PARKING PLATFORM

INCAR will offer innovative integrated EV-related services for both individual and professional EV drivers. It is going to set new ambitious standards regarding interoperability and roaming to access EVSEs across the Mediterranean and the Scandinavian-Mediterranean TEN-T corridor to facilitate international long-distance travelling. The INCAR application will combine booking features of parking slots and charging stations to increase the usage of existing infrastructure and decrease waiting times (park and charge combined service). In addition, INCAR will provide its users with real-time information about publicly accessible EVSEs as well as searching and routing to EVSEs alongside with integrated route planning for EV fleets.

Following the user centric approach of the project, INCAR will allow instant user feedback in terms of charging experiences and application usability to enhance the users' satisfaction level. INCAR will provide an operator and service provider independent platform to enable, non-discriminatory, convenient, and barrier-free access to EVSE by end users. In cities where this kind of platform already exists, the project will integrate all of them in order to enable cross-link features.

Parking management

In order to enable the booking feature of parking spots for EV drivers, all national legal requirements as well as possible specific legal privileges given to EV drivers must be considered for INCAR.

31. Do legal privileges exist which allow booking parking spots on public roads for EVs for the purpose of using charging infrastructure?

If not, are there any other norms regulating parking management for e-mobility services in your city/country?

32. Are there any exemptions from or reductions of parking fees for EVs in your country/city?

D1.3: Technical and legal requirements for USER-CHI solutions

e.g., use of parking facilities providing charging infrastructure?

34. Do options exist for parking management and enforcement of administrative offences,

which could be used for example to ensure that users will leave charging points as fast

as possible after finishing the charging process?

Roaming platforms:

Specific regulation for roaming platforms would influence INCAR and its innovative integrated EV-related services.

35. Is there national regulation on the topic of roaming platforms for the charging of EVs implemented in your country?

If yes, what requirements are provided by the national regulation? If specific regulation on the topic does not exist, please indicate this well.

SMAC - SMART CHARGING TOOL

SMAC is a platform that provides smart grid integration services for slow, medium, fast, and ultrafast charging by following the purpose of minimizing the grid impact associated to the implementation of charging infrastructure. This smart charging tool will provide high-value services to EV drivers, such as minimum charging prices and maximum RES electricity supply, considering specific constraints that will be prioritized in the charging sessions scheduling process. Moreover, SMAC will provide standard and scalable solutions for demand management and smart grid integration services by integrating V2G and using EVs as dynamic distributed storage devises, feeding electricity stored in their batteries back into the local electric grid when needed. That will bring benefits to the DSOs concerning flexibility and stabilization while reducing the grid impact of new charging infrastructure.

A main aspect of the demand management in SMAC will be an interconnected route management system for incoming vehicles while considering the grid availability, voltage, and frequency control constraints in real-time. Furthermore, SMAC will deliver a smart interconnection with AC and DC networks to uncover new value streams that attract investors to boost the upscaling of the infrastructure.

Measuring and calibration law

D1.3: Technical and legal requirements for USER-CHI solutions The field of measuring and calibration law is important for the technical produ because it can raise legal requirements for the design of charging point technology.

- 36. Which transposition laws of Directive 2014/32 (EU) (Measuring Instruments Directive) have entered into force applicable to the context of charging points (sale of electricity to users)?
- 37. Which (measurement and calibration) laws and arising duties have been applicable to the context of charging points before 2016 (end of the implementation period of Directive 2014/32) and still are?
- 38. Are there any national rules regulating the calibration of measuring devices in charging infrastructure?
- 39. Is there a legal duty to save data of measured values of energy within the electricity meter of the charging point?
- 40. Is the obligation to comply with legal metrology, which means the application of legal requirements to measurements and measuring instruments, only relevant for the users of measuring instruments, like the CPOs, or also for users of measured values, like the mobility providers?
- 41. Are the obligations arising of legal metrology requirements applicable for measuring devices or also back end systems?
- 42. Are there any national rules regulating tariff models in regard to payment for the use of public charging infrastructure?

Data access and sharing

The topic of data access and sharing is relevant as the regulatory framework may implement rights and duties for CPOs in regard of the data generated by the use of their charging infrastructure.

- 43. Are CPOs required by national regulation to provide online / real-time location and availability data of their charging points (e.g., information on whether the charging points are available, blocked, reserved...) to the general public, a centralized platform, some local authority or another recipient?
- 44. Are CPOs required by national regulation to provide historic consumption data of their charging points (e.g., information on how many charging processes were

- started, how much energy was consumed at which times, by which cars, ...) to some local authority?
- 45. What are the current provisions for data sharing processes among providers of charging services in your city/country in regard to minimum standards and interoperability?

D1.3: Technical and legal requirements for USER-CHI solutions

Energy Law

The topic of energy and mobility are more and more viewed together from the regulatory perspective on European and national level. Therefore, legal requirements for charging infrastructure may arise from the field of energy law.

46. Recital (40) of the Directive 2019/944/EU (on common rules for the internal electricity market) defines electromobility as an important element of the energy transition which will be crucial for the process of decarbonising transport. Therefore, amongst other things the Directive sets up regulations for flexibility services and connections to EV charging infrastructure.

Art. 32 of the Directive 2019/944/EU states, that "the Member States shall provide the necessary regulatory framework to allow and provide incentives to distribution system operators (DSOs) to procure flexibility services".

Furthermore, Art. 33 of the Directive 2019/944/EU states, that "the Member States shall provide the necessary regulatory framework to facilitate the connection of publicly accessible and private recharging points to the distribution networks."

Is the European legislation on the integration of EVs and Renewable Energy Sources (RES) into Smart Grid Services implemented already within the national framework?

- 47. Directive 2019/944 introduces relevant European legislation on the topic of connection to the distribution network for charging points. In this regard, Art. 33 (1) of the Directive 2019/944 states that, "(...) Member States shall provide the necessary regulatory framework to facilitate the connection of publicly accessible and private recharging points to the distribution networks. Member States shall ensure that distribution system operators cooperate on a non-discriminatory basis with any undertaking that owns, develops, operates or manages recharging points for electric vehicles, including with regard to connection to the grid."
- 48. Which regulations did your country implement for facilitating the connection of publicly accessible and private charging points to the distribution network and providing the non-discriminatory cooperation between the actors?

D1.3: Technical and legal requirements for USER-CHI solutions

- 49. Has the national legislation commissioned a study to evaluate whether nexibility services are economically efficient (above Article 33 Directive 2019/944/EU)?
- 50. Do DSOs have the right to adjust consumer's demand from controllable loads? If yes under which circumstances? Are there any restrictions?
- 51. Which laws regulate the physical electricity grid on a national level in regard to operation and maintenance as well as other kinds of interaction in regard to relevant stakeholders (public and non-public)?
- 52. Did your country (or state/province, individual municipality) already set up some specific regulation on the topic of Vehicle to grid (V2G)?

If not, are there legislative initiatives regarding the topic, which are planned or already initiated?

53. Does your country (or state/province, individual municipality) already use or test vehicle to grid (V2G) technologies (e.g., bidirectional charging)?

If yes, which of the rules stated above (in question 15) affect their application?

If no, which of these rules (addressed in question 15) would probably have an influence on future application of V2G?

54. In order to foster the feasibility of V2G technologies applicable network charges need to differentiate between both the network use for consumption of electricity as well as the network use in order to feed electricity into the grid.

Therefore, Art. 15 (4) of the Directive 2019/944 states, that "Member States that have existing schemes that do not account separately for the electricity fed into the grid and the electricity consumed from the grid, shall not grant new rights under such schemes after 31 December 2023. In any event, customers subject to existing schemes shall have the possibility at any time to opt for a new scheme that accounts separately for the electricity fed into the grid and the electricity consumed from the grid and the electricity consumed from the grid as the basis for calculating network charges."

Does the scheme in your country separate electricity fed into the grid and electricity consumed from the grid?

If not, do costumers already have the right to opt for new schemes, which account separately for electricity fed into and consumed from the grid?

251 D1.3: Technical and legal requirements for USER-CHI solutions Data protection law

The topic of data protection and security is important for the technical USER-CHI products as personal data is generated and saved by the use of charging infrastructure.

55. Directive 2019/944/EU (on common rules for the internal electricity market) addresses the topic of smart metering systems and their impact on data protection and security. In this regard, Directive 2019/944/EU recital (57) states that, "currently, different models for the management of data have been developed or are under development in Member States following deployment of smart metering systems. Independently of the data management model it is important that Member States put in place transparent rules under which data can be accessed under nondiscriminatory conditions and ensure the highest level of cybersecurity and data protection as well as the impartiality of the entities which process data."

Are there regulations on management of data models for smart metering systems, which have been already implemented in your country regarding the issue of cybersecurity and data protection of smart metering systems?

If not, are there other regulations contributing to data protection and security regarding charging processes in general?

INDUCAR - INDUCTIVE CHARGING FOR E-CARS

INDUCAR allows inductive charging on a high-level of automated power transfer, consisting of both, hardware, and software. The handling of cables is rendered unnecessary with this product, which offers a convenient charging experience for users. Sets of components enabling 3 kW and 20 kW power transfers for vehicles will be developed. In order to demonstrate inductive charging, two types of targeted vehicles will be retrofitted. The current state of the art concerning standardisation as well as prior discussions will be taken into account.

The wireless charging technology of INDUCAR will be completed by M2M (machine-to-machine) communication technologies offering charging features, payment as well as transparent identification. Moreover, outcomes of different USER-CHI products (INFRA and INCAR) will be integrated concerning topics of roaming, currency exchange, cyber security, and data protection.

Energy Law

The topic of energy law raises important legal requirements as the connection to the electricity grid is necessary for charging infrastructure.

D1.3: Technical and legal requirements for USER-CHI solutions

within the electricity market. Are charging stations defined as final users or suppliers of electricity under the

applicable national regulation?

If they are defined as neither, please indicate this as well.

57. Which national energy law regulations concerning reporting obligations must be observed by charging point operators under your national framework?

If none arise, please indicate this as well.

Regulation on inductive charging

As INDUCAR will implement the technology of inductive charging, regulation on the topic would implement relevant legal requirements.

58. The charging process with INDUCAR will be using electromagnetic induction pads installed both in EVs and in the ground of parking spots to enable a wireless and hands-free charging system for EVs.

Has your country already adopted regulation on the topic of inductive charging?

INSOC - INTEGRATED SOLAR DC-CHARGING FOR LEVS

INSOC will consist of a software and hardware combined solution to solve charging needs of LEVs (light electric vehicles), integrating on-site production of renewable energy and theft-proof parking (LEV box), as well as integrated payment and billing services. A standardised and replicable low-power DC charging solution with on-site produced renewable energy will reduce the price for end users and will cause a higher market acceptance due to the integration of all services: vehicle sharing, charging, parking, paying and renewable energy usage.

E-mobility sharing service providers will benefit from INSOC with the objective of minimising logistics and operation costs, avoiding the need to remove and charge batteries in an external hub. Moreover, energy suppliers and DSOs can also profit from the system, due to the smart integration with decentralised renewable energy that minimises the grid impact and offers flexibility to the grid.

Building and construction law

Building and construction law may implement legal requirements for the comb. Hereion of a solar system and a LEV box. Therefore, the following section will address requirements deriving from this field of law for INSOC.

59. Which permissions are required for the installation of a solar system by your national building and construction law?

If there is any specific size legally codified, under which there is no permission needed, please indicate that as well.

- 60. If a solar system for LEV charging stations will be installed in the inner city of your city, are there different requirements e.g. in comparison to an installation in a suburban or rural area?
- 61. Which requirements must be met by the construction of solar systems in regard to fire protection provisions on a national and local level?
- 62. Is there any permission needed to set up a LEV box in public space for parking and charging of LEVs under building and construction law?

If yes, please describe the administrative approval process.

Energy law

As electricity will also be generated by the solar systems of INSOC special legal requirements may arise in this regard.

63. Which rights and duties arise for electricity generators and suppliers under the applicable national energy law framework?

Please differentiate between electricity generators, which are connected to the grid and those who are not. In the latter case no rights and duties may arise.

Legal framework regulating road use

The regulatory framework for road use could determine legal requirements for the construction of INSOC in public spaces.

- 64. Are any permissions needed under national road use law in order to set up a LEV box on public ground?
- 65. Are local provisions on the preservation of historical monuments in force, which might oppose the construction of a "LEV box" and a solar system for LEV charging stations in certain public spaces?