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Abstract

One of the objectives of the USER-CHI project is the implementation of a smart grid integration
module (SMAC, Product P6) minimising the grid impact associated to the implementation of
charging infrastructure while providing high-value services for citizens and cities.

In this work we illustrate the results regarding models of charging infrastructures for electric
vehicles that adequately define and formalise their flexibility, control and response capabilities to
be integrated into the smart grid. The report analyses various insights of the charging
infrastructure, such as the components for an optimal investment starting from real data on
electric charging events of the demo-cities. In particular, the economic and functional impact of
the introduction of renewable energy sources and battery energy storage systems dedicated to
shaving load peaks was assessed. In addition, we illustrated algorithms and models for describing
the response of electric vehicle batteries and the charging infrastructure for optimal charging and
discharging actions.
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Executive summary

The purpose of the USER-CHI deliverable D4.1 “EV batteries and charging solutions models” is
to illustrate the results of task T4.1, “Modelling of EV batteries and charging solutions” which is
devoted to model the different aspects and interactions involved in the charging process.

The document begins with data analysis of demo-cities datasets for charging events
representing the benchmark for our analysis. Charging strategies are presented and validated
using appropriate models for electric vehicles battery. The document includes the planning of a
charging infrastructure integrated with a PV-battery system, considering costs and operational
aspects, including V2G aspects.

The USER-CHI task T4.1 is part of the WP 4 which is devoted to the development of the product
P6 SMAC, implemented in tasks T4.2-T4.4.
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1.Introduction

1.1 Scope of the document

This report illustrates the results of the work carried out in activity T4.1 "Modelling of EV batteries
and charging solutions", aimed at identifying the main characteristics of a charging structure and
its interaction with users and the electricity grid. It contains the analysis of data on charging
events carried out in 2019 in some of the cities participating in the USER-CHI project. The data
are intended to numerically validate the models created in the activities of the task.

To evaluate the operation of a charging station, the power flows were identified, as well as the
main characteristics of the components of the charging process, including the batteries of electric
vehicles. In this regard, different models were compared concerning the response of variables of
interest.

Approaches for charging algorithms have also been proposed to shave the peak demand at the
station, including the possibility of bidirectional power flows with the vehicle batteries. The
effects on the charging profile, and the feasibility from the point of view of the user, are analysed.
Finally, a system for the optimal sizing and management of a charging infrastructure equipped
with a photovoltaic and battery stationary storage system has been evaluated on the case studies
of some demo-cities.

1.2 Structure of the document

The document is structured as follows. After the Introduction, Chapter 2 is dedicated to the
analysis of data on charging events in 2019 from the cities of Turku, Rome, and the metropolitan
area of the city of Barcelona.

Chapter 3 is dedicated to the modelling of automotive batteries to evaluate their response to
different algorithms, strategies, and proposed profiles. It also illustrates a fuzzy-type approach to
manage recharges in a hypothetical charging station.

Chapter 4 focuses on the design, economic and technical feasibility of a charging station
integrated with a renewable energy source and storage system. From the sizing we move to the
evaluation of the power flows typical of the operating station.

Chapter 5 contains the conclusions. Annex A collects a review of electrochemical energy storage
technologies, while Annex B illustrates some aspects related to battery aging. Annex C reports
the answers to a questionnaire submitted to cities on some issues relating to the charging
infrastructures in their territory.
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2.Charging events datasets and
analysis

The available datasets came from the Municipal Area of Barcelona (AMB) and from the city of
Turku, and have the following structures:

° AMB data set:

o “HISTORIC DATA 2019 ELECTROLINERES AMB.xIsx” with the following
records: CHARGING POINT; CONNECTOR; START TIME; STOP TIME;
DURATION (min); VEHICLE; MODEL

o “STATIC INFORMATION CHARGING POINTS AMB 29042020.xIsx”,
with the following records: Location, longitude, latitude, Schuko 3kW
16A mode 1, Mennekes 7 kW 16A mode 3, Mennekes 43 kW 63A mode
3, CHAdeMO 55kW 125A mode 4, Observations, Maker

° Turku data set: “Lataustapahtumat, julkiset latauslaitteet 2019.xIsx” with records:

Created, Station ID, Station name, Start time, Stop time, Duration, Energy (Wh),
Plug Type (AC/DC), Cumulative energy (Wh)

In AMB data, “normal” chargers include 3 kW and 7 kW, while “quick” refers to 43 kW and 55
kW. In Turku dataset, AC refers to 22 kW and DC to 50 kW.

We also analyze the Rome data set, but the results are not used, since this data set contains only
aggregated information.

2.1 AMB

From the original AMB dataset (38219 charging registrations), we removed 1806 records with
zero energy exchange (around 4.7% of the dataset). The average parking time duration of these
records is 45.96 minutes, ranging from 5 minutes up to about 10 days.

Moreover, we disregard 220 records in which the average charging power (energy/duration(h))
is greater than the maximum nominal power of the charging point (as obtained from registrations
in AMB dataset”).

After the above filtering, we obtained a dataset of 36193 records with an average charging
duration of 45.67 minutes and a standard deviation of 704.5 minutes, while the average energy
delivered is 10 kWh with a standard deviation of 7.7 kWh.

When selecting only normal chargers (slow: 3kW or 7kW), we obtain 3155 records with an
average charging duration of 223.6 minutes and a standard deviation of 2377.7, while the


https://tecbox.etra-id.com/share/page/site/userchi/document-details?nodeRef=workspace://SpacesStore/df146477-81a8-4ec1-b01a-ef1cac6ce6db
https://tecbox.etra-id.com/share/page/site/userchi/document-details?nodeRef=workspace://SpacesStore/5106d333-eb2e-4f6c-96c5-763302b40459
https://tecbox.etra-id.com/share/page/site/userchi/document-details?nodeRef=workspace://SpacesStore/24ce7ef6-af7a-4c0a-87ec-9525edae8980
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average energy delivered is 4.1 kWh with a standard deviation of 4.9 kWh. However, we
disregard a record with a charging duration of over 92 days referred to the charging point “FLNR
Sant Andreu da la Barca: Pg. Rafael de Casanova FGC”, which is the only one with 7kW power
delivered. On the other hands, 8 records exceeding the 24 hours duration are included. The
relevant statistical parameters for the AMB dataset (mean value and standard deviation) are
reported in Table 1.

Table 1: Statistical parameters for AMB datasets

Dataset Mean duration St. dev duration Mean St. dev energy

(min) (min) energy (kWh)
(kWh)
41.99 90.37 10.09 7.76

| Normal [REHRSS 262.96 4.11 4.91
28.67 17.57 10.66 7.74

Table 2 reports some figures on the usage of the CPs based on their typology such as the average
number of charges during the year and in a day. Last two columns report the value for the most
and less crowded CPs. In Table 3 itis reported the number of charges for each location, for normal
and quick chargers.

Table 2: Usage of charging points for different typology

Charge typology No. charge/year No. Max Min charge/day

charge/day charge/day

286.7 0.79 1.69 0.15
33029 9.05 14.03 3.78

Table 3: Usage of charging points for each location

No. Of Total no. Of
. Normal
Location CPId charges charges
(year) (year)

Sant Andreu da la Barca:
Pg. Rafael de Casanova FGC

Badalona: C. Anna Tugas -
Pg. Olof Palmer

2

Barbera del Vallés: 3 55 13 2399 2454

Arquimedes, 8
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No. Of Total no. Of
Location charges charges

(year) (year)

Cornella de Llobregat:
Carrer de Baltasar Oriol i
Mercer

El Prat de Llobregat: PI 5
Volateria (Mas Blau)

Gava: C. del Progres, 54 6

L'Hospitalet de Ll: C.
Salvador Espriu - Gran Via
de les Corts Catalanes

Montcada i Reixac: C.
Tarragona - C. Pla de g3
Matabous

Palleja: Rda. Santa Eulalia -
C. Joan Maragall

Sant Cugat del Vallés: Av.

10
Via Augusta, 3

Sant Joan Despi: C. TV3 - C. 11 51 21 3648 4169

Jacint Verdaguer
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In Figure 1, the mean value of the energy and standard deviation for normal charges are
presented.

Figure 1: Mean value and standard deviation of the energy delivered during the charge of normal chargers
(3 and 7 kW).

B Mean Consupmption  H Dev. std Consumption

10

1 2 3 4 5 & 7 B 9 10 11
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Energy (kWh)
IS = o
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Figure 2 shows the mean charging duration, along with its standard deviation. The mean duration
is around 100 minutes for the largest part of the charging points, while the larger standard
deviation is observed for the charging point n.8 (PdRL Montcada i Reixac: C. Tarragona - C. Pla
de Matabous) for which several records have a duration of more than one day.

Figure 2: Mean value and standard deviation of the charge duration for normal chargers (3 and 7 kW).

M Mean duration B 5td. Dev. Duration
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&00
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Figure 3 reports the total number of charging events in the year. The graph shows that only 3
charging points (CP) register more than 1 charge per day (CP 6, 9 and 11). The most popular
charging point is the n.6 (PdRL Gava: C. del Progres, 54),
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Figure 3: Number of charging events (yearly) for normal chargers (3 and 7 kW).
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When only quick chargers are selected (43kW or 44kW), we obtain 33029 records with an
average charging duration of 28.7 minutes and a standard deviation of 17.6, while the average
energy delivered is 10.7 kWh with a standard deviation of 7.7 kWh. The median value is 26
minutes

Bar charts reported in Figure 4 and Figure 5 show that the “quick” charging dataset is more
homogeneous than the “normal” charging ones in terms of energy distribution, and duration,
probably because this type of refilling reflects a use more similar to that of petrol stations, where
refueling is done along the way.

Figure 4: Mean values and standard deviation of the energy delivered for quick charging points.
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Figure 5: Mean values and standard deviation of the charge duration for quick charging points.
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Figure 6 reports the number of annual charge events for each charging point. In this case, on
average, all the CPs have at least more than 3 charges per day.
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Figure 6: Number of charging events for quick charging points.
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2.1.1 Distribution of charges during weekdays

Figure 7(a) reports the distribution of the hourly number of charging events while Figure 7(b)

reports the mean hourly duration of charges during a weekday.

Figure 7: Hourly distribution of number and average duration of charges during a typical weekday.
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Figure 8 shows the analysis of the previous parameters for normal chargers during working days

(Monday to Friday) and during weekends (Saturday and Sunday). In Figure 8 (a) we report the

average number of charges that start at a given hour during the working days and the weekend.

In the weekdays, normal charges start prevalently at 5 pm lasting until 7pm, with secondary
peaks at 1 pm. On the other hand, during weekends the distribution of the start time is flatter,
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with two peaks at 1pm and at 7pm. Also, the number of charges per day is smaller for the
weekends. The mean charge duration does not show distinctive patterns, even though it tends
to be longer in the nighttime in both cases.

Figure 8: Hourly distribution of average number (a) and average duration (b) of charges for Normal chargers
during of a working day and during weekends.
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Figure 9 (a) reports the average number of events per charging point! for quick charges. Besides
that, the number of quick charges is much larger during weekdays than during weekends, the
hourly distribution is similar, even though during weekday there is an increase around 6 pm, while

1 Total number of events/total number of quick chargers
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during weekends there are two different peaks, around 12 am and 7 pm. The mean charge
duration, Figure 9 (b), is quite homogeneous for different hours and days, with a slight increase
during nighttime of working days (12 pm — 5 am). This supports the hypothesis that fast charging
is perceived in a similar way of refueling at the station.

Figure 9: Hourly distribution of the average number (a) and average duration (b) of charges for quick
chargers during weekdays and during weekends.
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Table 4 reports some parameters for the yearly dataset referred to weekends and working days.
The number of quick charges during weekends and working days (per day and per charging
point) is the 91% and 93% of the total number of charges, respectively.
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Table 4: Average parameter for weekend and working days.

Dataset No. (o] N \[- of Mean Mean Mean Mean
AMB events/CP  events/CP duration duration energy energy
Mon-Fri Sat & Sun Mon-Fri Sat & Sun Mon-Fri  Sat & Sun
(min) (kWh) (kWh)
| Normal [JRYVAS 48.36 22801 176.92 4.18 3.97
2634.4 681.4 28.42 29.87 10.59 11.86

Figure 10 reports the mean duration and mean energy consumption of quick and normal charges
for the period of (1) December, January and February; (2) March, April and May; (3) June, July and
August; (4) September, October and November.

Figure 10: Seasonal influence on some charge parameter: (a) mean charge duration, (b) mean charged
energy for the following periods: 1: December, January and February; 2: March, April and May; 3: June, July
and August; 4: September, October and November.
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Figure 10 clearly shows there are no significant differences among the seasons with the
exception of a longer duration for normal charges during the winter compared to the rest of the
year, and a slight increase of the energy delivered.

In the dataset, there is some information about the EV models having benefited from the charge,
but this is scarce and is recorded in the database without a predefined format. However, we can
try to infer some information about the battery by cross-referencing the charging data, the vehicle
model, and the information provided by car manufacturers. The smallest battery size is 3.1 kWh
for the Volta BNC. However, there are some discrepancies among data. For example, 287
registrations declare an amount of energy delivered greater than the battery capacity (up to 7
times, as retrieved from datasheets or from literature, normally available for the latest models.
There are also some EVs models that can have onboard batteries of different size). However,
these discrepancies have not be taken into account in the data selection since we cannot be sure
about the real capacity of the EV battery actually connected (we are not aware how the EV model
information has been acquired during the charging registration and the real battery size).

If we exclude these records, we can attempt analyzing the relationship between charge duration
and the fraction of energy delivered with respect to the battery size. The dataset including normal
and quick charges has a linear correlation coefficient (Lcc) of 0.3206 (weak linear correlation). Its
graphical representation is reported in Figure 11. If only normal charges are considered, the Lcc
is 0.5494, while it becomes 0.4061 for quick charges. The best correlation for normal charging
may be that it is used routinely. In fact, normal refills show more regular start and end times,
which can be linked to arrival and departure from a usual parking lot, such as the workplace or
home. Since these are regular trips, the initial and final battery charge state is more or less the
same for each day.

Figure 11: Charge duration of quick and normal charges.
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The correlation factors among other parameters of the dataset can be calculated. Table 5 and
Table 6 show that no correlation exists among the starting time of the charge and the duration
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or the energy delivered. In addition, a very low correlation exists between the energy delivered
and duration, both for 3 kW and quick chargers.

Table 5: Correlation factors for 3kW chargers.

Normal Duration (min) Energy (kWh) Start time of the day

1 0.4642 00215
Energy (kWh) 0.4642 1 -0.0414

Start time of the day 0.0215 -0.0414 1

Table 6: Correlation factors for Quick chargers.

Start time of the
day
Duration (min) 1 0.5705 0.0067

Energy (kWh) 0.5705 1 0.0566
Start time of the day [ReXe[elsy4 0.0566 1

Duration (min) Energy (kWh)

The usage of the charging points during the year is reported in Figure 12-Figure 14. For the
charging station of 7 kW (4 CPs) we can observe, after an idle time of nearly 4 months, a period
of use with a very low energy delivered (Figure 12). This may refers to long parking events or
errors in the registration system of the chargers.

From Figure 13 it is evident that the chargers at the quick stations are never fully deployed, as
the occupancy is never greater than one even though there are 3 CPs in each station. The
occupancy for normal stations sometimes saturates the number of CPs (2 for each station, Figure
14), but this could be due to a parking time longer than the charging time.
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Figure 12: Number of users and energy delivered at the charging point FLNR Sant’Andreu da la Barca.
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Figure 13: Number of users at quick charging points.
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Figure 14: Number of users at normal charging points (from station 2 to 11).
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Figure 15 shows the frequency distribution of the charging power to the various types of stations.
It can be observed that, for the 7kW station, most of the charging events take place at very low
power. This is actually due to the very long parking times of the cars which show charging times
of even days compared to a small amount of charged energy. For the "quick" and 3kW stations,
the frequency distribution is more centered on values compatible with the rated powers of the
CPs. In particular, for "quick" recharges the modal value is around 17 kW, while for "slow"
recharges it is around 2 kW.

Figure 15: Average power delivered during charge (a) at the 7kW station, (b) at quick stations, (c) at 3 kW
stations.
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2.1.2 Inferences on dynamic information

The information in the dataset is only related to the charging events but it does not contain any
dynamic information on the demand (waiting time, distances, etc.). Therefore, we can try inferring
some information by analyzing the time interval between two consecutive charging events:

(Idle time)cp,x = (start time)x — (stop time)x — 1

The distribution for CP is shown in Figure 16.
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Figure 16: Distribution of the minimum idle time.
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As it can be seen, the idle time is shorter for quick chargers, as can be also inferred from the
average number of charges per day. The mean value of the idle time over the year is showed in
Figure 17 where itis possible to observe the occurrences of short idle time are fewer for “normal”
charger points (CPs)

Figure 17: Mean idle time for CP.
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This confirms that, for “normal” charging, there is a high possibility to keep the parking lot
occupied even when the charge is ended.
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2.2 Turku

For the city of Turku, the original dataset is composed of 7737 records. We do not consider
records with energy and/or charge duration less or equal to zero. The dataset is then reduced to
6536 records. The relevant statistical parameters for charge duration and energy delivered are
reported in Table 7.

Table 7: Mean values and standard deviations for different datasets referring to Turku.

Dataset Mean Stdev Mean energy Stdev Mean
duration duration (kWh) energy number of
(min) (min) (kWh) charges/day

195.31 502.38 6.31 6.64 0.99

232.28 574.33 5.77 5.45 0,92
25.58 25.88 8.80 10.14 16

We can see there is a relevant dispersion in all the data sets. In particular, for the AC the
dispersion is quite relevant for the charge duration, while for the DC charges the dispersion is
more relevant for the energy delivered.

Graphs in Figure 18 to Figure 21 show the same statistical parameters reported in Table 7 for
each charging types. In particular, in Figure 18 we report the mean value and the standard
deviation of the energy delivered by AC chargers. It is interesting to observe that some charging
stations differ from the average behavior. In particular, CP no. 6441 delivers a relevant quantity
of energy in a relatively low usage rate, as can be seen from Figure 19, where the mean charge
duration, its standard deviation are shown, along with the total number of events over the year.
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Figure 18: Mean value and standard deviation of energy (in kWh) for AC chargers (22 kW) 2.
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The distribution of the charge duration shows two tendencies: most of the charge durations are
between two and three hours, while some charging stations show average durations above the
eight hours. However, these stations show huge deviations, so probably there are few events of
very long duration.

2 Inferred from data: to be confirmed by Turku
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Figure 19: Number of yearly charging events, mean value and standard deviation of the duration (min) for
AC chargers.
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Very little can be said on DC charging events because of their relatively low numbers. Indeed,
there are only 2 DC charger station in the entire dataset, and their average daily use is around
1.6 user per day (see Table 7). Although the set is small, some information can be obtained from
the data. Figure 20 shows the mean value and the standard deviation for the energy delivered
during the charges. The mean values are very similar for the two stations. It can also be seen that
the mean energy is quite small, so it can hypothesize that fast charge are used for small recharges
(biberonage).
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Figure 20: Mean value and standard deviation of energy (in kWh) for DC chargers.

H Mean Energy B Dev_std. Energy

10
B
&
4
2
0
3023

1126

Energy (kwh)

Charging station (DC)

The DC charge durations (Figure 21) are close to the typical charge durations found in literature.
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Figure 21: Mean value and standard deviation for the duration (min) of charges at the DC chargers.
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In the following, we analyse the distribution of charge during the day. Figure 22reports the hourly
distribution of the starting time for the total number of charges over the year. As we can see,
most charges started around 8 am, with a secondary peak at 12 am, followed by another local
maximum around 4 pm.
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Figure 22: Distribution of charges starting time during the day.
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It is interesting to note the difference in the frequency distribution of charging starting hours
during working days (Monday-Friday,) and weekends (Saturday and Sunday) reported in Figure
23 (a). The 8 am peak, present in the weekdays,disappears during the weekend.

As for the mean charge duration, Figure 23 (b), the longest charging sessions are in the afternoon
during the weekends, while during working days there are three main charge starting peaks at 8
am, 12 am and 16 am, which roughly corresponds to the commuting hours.

Figure 23: Frequency distribution of charge starting hours (a) and charge durations (b) during working days
and weekends.
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The differences between AC and DC of the charge duration distribution for working days and
weekends are shown in Figure 24and Figure 25, along with the mean energy delivered. For AC,
the energy delivered during the charge is similar for the weekdays and weekends dataset (Figure
24 (a)), except for the first hours of the day. However, there are few charges events in those
hours (as can be seen from Figure 23 (b)), so the variability is high and no meaningful inference
can be made. Also, the charge duration is comparable among weekdays and weekends events
(Figure 24 (b)). However, the hourly distribution is different, as could be expected since the habit
are usually different for working and non-working day.
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Figure 24: Distribution of AC charge mean energy (a) and duration; (b) during working days and weekends.
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The DC dataset present a similar distribution for weekday and weekends both for the energy
delivered during charges (Figure 25 (a)) and their duration (Figure 25 (b)). Also the time the
charge events starts are very similar for the two datasets.
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Figure 25: Distribution of DC charge mean energy (a) and duration (b) during working days and weekends.
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Charges during weekends tend to be shorter and deliver more energy than charges during
working days (Table 8).
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Table 8: Mean values of charge duration and energy exchange for working days and weekends.

Dataset Mean Mean Mean energy Mean energy

duration Mon- duration Sat& Mon-Fri Sat & Sun
Fri (min) Sun (kWh) (kWh)

199.98 17872 6.21 6.67
C 233.43 227.75 5.67 6.17

C 26.36 23.69 9.02 8.27

DC charges tends to be used more often than AC chargers (Table 8), confirming what observed
for AMB (Table 2).

Table 9: Average number of charges during the year and the day, for the AC, DC chargers.

Charge typology No. charge/year No. charge/day
335.4 0.92

AC
5845 16

Figure 26shows the seasonal influence on the charging behaviors. In this case, quick (DC) charge
duration seems to be a little shorter during the summer, while the AC charge does not show this
feature. In addition, the energy delivered is generally smaller, while it is higher during winter with
longer charging session. Probably, this is because fast charges are quicker when the battery
temperature is higher, while the battery consumption is higher in winter because of the use of
auxiliary services such as heating.

Figure 26: Seasonal influence on charging parameters: (a) mean charge duration; (b) mean energy delivered
during the charge, for 1: December, January and February; 2: March, April and May; 3: June, July and August;
4: September, October and November.
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2.3 Rome

Rome dataset reports the daily number of charges and energy delivered for each charging point.
The CPs are not classified as normal or quick type.

Number of:

1. Records: 56924;
2. Charging points: 514.

If null records are not considered (empty number of charges and/or energy delivered) the dataset
reduces to 47083 records referred to 298 charging points. If we also exclude the records with
zero energy, we obtain a further reduced dataset of 44947 records.

Table 10 shows that some relevant statistical parameters such as, the standard deviations for
the daily number of events per CP and the energy delivered are quite large.

Table 10: Relevant statistical parameters for Rome dataset.

No. of Energy Average
events/CP/day delivered/CP/day energy/charges
(kWh)

19.36 7.28
19.35 3.85
3145 47.6

0.01 0.64
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Figure 27 shows the average number of daily charge events for each month (starting from
January). The values recorded for the month of January is the smallest ones. Indeed, the total
number of charges during January is the smallest of the year (Figure 28). This is because of
several reasons such as increasing number of EVs, new CP activated, etc. However, there are not
enough elements in the dataset to clearly state any of the above hypothesis.

Figure 27: Average number of charging events by day for different month.
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Figure 28: Total number of monthly charging events.
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In the following we analyse the distribution of the average number of charges during weekdays.
As shown in Figure 29, most charging events occur on Sunday (day 1) and Friday.
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Figure 29: Average number of weekly charging events
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Figure 30 shows the averages values of energy delivered and the number of daily charging events
during the quarters of the year. The energy delivered during winter and summer quarters are
among the lowest recorded during the year. However, this is in contrast with what observed from
the datasets of other cities for which the energy delivered during the winter quarter is the highest.
Figure 31 shows the average number of charges and mean energy for each month. Again, we
can observe different trends between the month of January and the two months of December
and February. However, as before, we don’t have enough information to investigate the reason
for this behavior.

Figure 30: Average number of charges and mean energy for different quarters: (1) winter; (2) spring; (3)
summer; (4) autumn.
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Figure 31: Details for the number of mean energies delivered per month.
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2.4 Simulations from data

When performing statistical analysis, we obtain a non-parametric distribution for the arrivals at

the CP as a function of weekdays and weekends, based on the frequency of the events. At this
stage, we disregard seasonal effects.

From the statistical analysis, we can generate several possible scenarios of charging demand to
be used in Monte Carlo simulations to get information on several variables for CP management,
such as energy demand, waiting time, etc. The workflow of the process is reported in Figure 32.
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Figure 32: Workflow of the scenarios creation.

Statistical behaviour of the sample

eExtraction of basic statistical parameters for arrivals,
charge durations and consumptions

eAnalysis of correlations.

Statistical inference

eDistribution function of the arrivals from non-
parametric fitting.

eStatistical parameters as a function of the arrival time.

Generation of the charging scenario

eGeneration of the charge demand
eCharging demand management

To determine the duration of the recharge and the energy required, the mean and the variance
obtained from data within each time interval were considered for workdays and weekends.

With this data, and the a posteriori distribution of arrivals, a scenario of arrivals for a charging
station can be determined, given an average number of daily arrivals. To increase the variability
of the data, white noise was also introduced on the duration and energy values.

Once the hypothetical weekly request is generated, an algorithm executes the requests,
simulating the recharge (in terms of duration and energy), managing the waiting queue and the
possible loss of users due to long waiting times.

To simulate users’ behavior, we used a Simevent-Simulink model integrated with a fuzzy model
based on the waiting time, plus a random input variable to include the possibility of a user to
decide waiting even if the waiting time exceed the threshold time of 10 minutes.

In the following we illustrate two examples extracted from AMB dataset for normal chargers. In
the two examples the number of charging points is the same, as well as the average duration of
the recharge of about three hours, and the average value of the recharged energy is about 5 kWh.
However, the number of users almost doubles in the second case. As a consequence, the waiting
time goes from zero to an average value of 15 minutes, with a maximum waiting time of 47
minutes.

Example 1: 123 users, 3 CPs in the station. In this scenario, the waiting time is always null,
and there is no user-loss. The mean duration for the charge event is 185 mins and the mean
energy delivered for charge is 4.9 kWh, which is in line with data reported in Table 1.
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Figure 33 shows the CPs occupancy of the station during the week (starting with Monday), while
Figure 34 reports the value of the energy delivered during the same time period. Since there is
no information on the maximum power delivered during the charge, no further detail can be

obtained for energy characterization.

In addition, since no meaningful correlation has been found among charge duration and energy
delivered, the two quantities are uncorrelated also in the simulation.

Figure 33: Occupancy at the CPs for the week, example 1.
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Figure 34: Energy delivered at the CPs for the week, example 1.
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Example 2: 226 users, 3 CPs in the station. In this scenario, the maximum value for the

waiting time is 47 minutes with an average waiting time of 15.5 minutes; the number of users

lost is 26; the mean duration for the charge eventis 185 mins, and the mean energy delivered for

charge is 4.9 kWh, which is in line with data reported in Table 1. As shown in Figure 35, the

occupancy is higher than in the previous case and the occupancy of the CPs is saturated almost

all the time.

Figure 35: Occupancy at the CPs for the week, example 2.
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The energy delivered is also slightly higher than the previous case, as it is more probable that

several charges occur at the same time (Figure 36).

Figure 36: Energy delivered at the CPs for the week, example 2.
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In this scenario, if the slow chargers were replaced with quick chargers, only 6 users would be

lost.
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These two examples show that the simulations of the load profiles can be used for the analysis
of the scenario about penetration of electric vehicles and the diffusion of charging infrastructures
of different types.
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3.Battery modeling

A battery consists of one or more electrochemical cells connected in series or in parallel where
electrochemical reactions happen. The conversion from electrical into chemical energy takes
place during the charging phase, while the conversion from chemical energy into electrical energy
takes places in the discharging phase. In general, each cell consists of an anode, a cathode, an
electrolyte, and a separator. However, the specific composition of each cell can depend on the
battery technology. Indeed, there are many different types of batteries (see Annex A —
Electrochemical energy storage).

3.1 Electrochemical batteries

Electrochemical storages are characterized by various parameters such as capacity, voltage,
specific energy and power, Coulombic efficiency, and operating life.

By comparing specific power and energy among the batteries commercially available, lithium-ion
batteries are currently the best performing with specific energy up to 180 Wh/kg, power up to
10 kW/kg, and operating life of several thousand cycles (up to 5000). However, their costs per
unit of storage capacity (€/kWh) are higher than lead-acid and nickel-cadmium batteries offering
specific energies of the order of 40 and 80 Wh/kg, respectively and powers lower than kW/kg.
Future developments for Li-ion are large format cells (>150Ah) with high energy density (> 400
Wh/kg and 800 Wh/L) by 2030[1].

On the other hand, flow batteries and sodium batteries offer high storage capacity (up to several
MWh of stored energy) and are usually used at utility level. Sodium-sulfur (NaS) batteries and
vanadium flow batteries are now commercially available, while sodium nickel chloride (Na/ NiCI2)
batteries and other types of flow batteries are not yet widely used in stationary storage. Sodium
batteries have specific energy between 120 and 240 Wh/kg, specific power between 150 and
250 W / kg, excellent duration (2500-4000 cycles), and costs close to lithium batteries.[2]

Lithium-ion and sodium/sulfur batteries currently dominate the worldwide market of batteries for
stationary use, although it is possible finding lead acid systems and flow batteries. In a short-
medium term perspective (2020-2030) there is the possibility of a more massive penetration of
lithium-ion batteries in the market and a significant increase in the production of flow batteries.
In terms of cost, lead-acid batteries are between 30 and 170 €/kWh, lithium-ion batteries
between 250 and 850 €/kWh and, nickel-cadmium batteries between 250 and 500 €/kWh. The
gap in prices is due to the intrinsic characteristics of the batteries even though the cost of some
innovative lead-acid batteries can reach 1400 $/kWh. Flow batteries cost between 400 and 1200
€/kWh, which however rapidly decreases as the size of the system increases. On the other hand,
the cost of NaS and Na/NiCl2 batteries is between 300 and 500 $/kWh and 500-850 €/kWh,
respectively. However, it should be pointed out that the real battery cost and the cost projections
for stationary lithium-ion batteries are rapidly change for the automotive sector [2] [3].
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The most promising technologies on the market today are lithium-ion batteries, high-
temperature batteries (based on sodium-sulfur and sodium-metal chloride cells), and flow
batteries. For these three categories, the installation costs are forecasted to be between 54 to 66
percent.[3]

3.2 Battery models

There are many studies about battery modeling in the literature. In general, battery models are
classified according to the approach they use, although there no official classification exists, and
approaches may be hybrid, or apply different mathematical methodologies. Some approaches are
based on the physico-chemical phenomena occurring inside the battery and require a thorough
knowledge of the materials that make up the battery and their interactions. In other approaches,
the battery model can be seen as a black box based on a set of experimental data related to the
input and output variables of the system. A black-box model is completely unrelated to the
physics of the underling processes, such as the chemical reactions occurring inside the battery.
For this reason, the black-box model is applied in cases where the elementary constitutive laws
of the phenomenon are not easily identifiable, or when there is the need of reproducing highly
complex phenomenon in a simple way. The accuracy of the model often depends from the
quantity and quality of the available data.

For battery modeling, the most general inputs are the current (), the state of charge (SOC) and
the temperature (T). The output is the voltage (V), while the modelling parameters are the open-
circuit voltage (Eo), the initial capacity (Ci), and the internal resistance (Ri), as reported in Figure
37.

Figure 37: Typical representation of a black box model for a battery.
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3.2.1 Electrochemical models

Among the most accurate battery models there are electrochemical models, often used to validate
other types of models. Electrochemical models simulate the battery behavior by reproducing
physical phenomena occurring inside the battery. In most cases, these models refer to the works
of Doyle, Fuller, and Newman in which the charge-discharge phenomena [4] and the relaxation
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phenomena of the insertion processes of the lithium [5] are modeled using the theory of
concentrated solutions.

Electrochemical models try representing phenomena occurring in the battery to describe the loss
of active material due to the reaction of the solvents, the growth of the anode resistance, the
diffusion phenomena, etc. Therefore, they are very complex and they are described by a system
of coupled differential equations with a large number of parameters. For this reason it becomes
crucial determining the values of microscopic variables starting from measurable macroscopic
variables, often resorting to semi-empirical methods. Furthermore, simulations with these models
allow accessing the values of the internal variables, which are difficult to measure in the
laboratory under operating conditions. However, due to their complexity, these models can only
be solved with powerful computational approaches. In order to reduce computation times and to
make these models usable even in contexts where less accuracy is required, simplified
hypotheses are often introduced, such as one-dimensional models or single-particle
concentration. Electrochemical equations can also be coupled to other approaches, such as
thermal models.

3.2.2 Analytical models

Analytical (or empirical) models show higher level of abstraction than previous approaches. In
this model the battery is represented with a few equations that try to reproduce certain responses
to given inputs. In particular, when it concerns battery aging, these models correlate the battery
stresses with the trend of key variables such as capacity and internal resistance. Therefore, the
estimation of aging parameters is based on experimental measurements. These models are often
used for on-line battery prognostics (e.g., in electric vehicles). In addition, to monitor battery
health, mathematical models should not be computationally expensive.

3.2.3 Stochastic or data-driven models

Compared to other models, stochastic models rely on experimental data to predict battery
behavior. Therefore, stochastic models provide an abstract representation of the battery (cell or
system) capable of reproducing its behavior with less computational effort than electrochemical
models but with higher accuracy than other types of models. In particular, stochastic models are
able to model sudden battery failure, charge recovery, capacity recovery and Peukert's law. On
the other side, they need extensive laboratory tests to collect enough data.

3.2.4 Equivalent circuit models

Equivalent circuit models are among the most popular models since they show a satisfactory level
of accuracy with lower complexity than electrochemical models and significantly shorter
simulation times.

The simplest possible equivalent circuit consists of an ideal voltage source and a resistor. This
simple system reproduces the main characteristics of a battery in a quasi-stationary condition,
while its accuracy is very low when considering rapid dynamic conditions. Adding a capacitance-
resistance (RC) branch, the model can reproduce the polarization effects of the battery and
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becomes more reliable. These types of equivalent circuits are called “Thevenin’s models”. By
adding further RC networks to the equivalent circuit, it is possible to obtain models that are more
realistic, with an increased resolution.

Most of the battery models require extensive datasets obtained with laboratory equipment to
determine their parameters. However, it is possible to parametrize an equivalent circuit model
using the information contained in a typical commercial Li-lon cell manufacturer’'s datasheet. On
the other hand, equivalent circuit models showed to perform better than some simplified
electrochemical models in term of accuracy since they take into account relaxation phenomena.[8]

For this purpose, as shown in Figure 38, we use a model that can be represented by an equivalent
electrical circuit. The model consists of a main reaction branch that takes into account the
reversible process of charge and discharge, represented by the electromotive force (EMF) Eo,
which corresponds to the open-circuit voltage (OCV). The EMF is in series with an equivalent
series of resistance and a parallel resistance-capacity (RC) circuit accounting for relaxation
phenomena. Other battery characteristics with faster dynamics can be described by adding more
RC branches. The EMF, the resistances and the capacity are a function of the state of charge of
the battery and of the temperature. However, the present model does not take into account the
influence of temperature.

Figure 38: Equivalent circuit model
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The SOC at a given time t is defined as the ratio between the charges accumulated in the battery
at time t and the nominal capacity (eq. (1)). The charge stored in the battery is the integral of the
current over the time with negative value for charging current and positive value for discharging
current. Also, the so-called depth of discharge (DOD), defined as in equation (2) is defined:

t
t 1 idt
soc(t) = 12O _ Jy
(1) Crom 3600 Cpom

(2) DOD =1-S50C
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The battery capacity can be measured from a standard cycle, consisting in a complete
charge/discharge/charge cycle, usually at a charge current C-rate® of 0.5C or 1C. A typical
discharge-charge profile is reported in Figure 39, where the applied current profile and the
measured voltage are shown.

Figure 39: Standard discharge-charge profile
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The capacity is then determined by the integral of the current over discharge time interval (eq.

(3))-

1 tdsc
3600
(3) fo

To determine the EMF Ey, a constant current is applied for a sufficiently long time to set the electric
circuit to a steady state. At this point, the current is interrupted and the voltage response of the
batteries to this current step is measured with Eq corresponding to the asymptotic voltage value.
The input current and the typical voltage response are shown in Figure 40(a) and (b) respectively.

3 The C-rate is a conventional way to express the amount of current applied as a function of the battery
capacity. C-rate = 1 is the amount of energy required to fully discharge (or recharge) the battery in 1
hour. C-rate = 2 refers to a current capable of discharging/charging the battery in half an hour. C-rate =
0.5 is a current capable of discharging/charging the battery in 2 hours, and so on. Different currents
correspond to the same C-rate, depending on the size of the battery. A C-rate = 1C is equal, for example,
to 10 A for a 10 Ah capacity battery, and 100 A for a 100 Ah capacity battery.
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Figure 40: Determination of EO with the current step method.
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From the analysis of the voltage response to the current step, it is possible to extract the
parameters of the equivalent circuit. The internal resistance is calculated as the ratio between the
voltage drop and the amplitude of the current step. In the potential drop, two timescales can be

identified. The first potential drop is due to the resistive part of the circuit R,, while the second
phase is due to the relaxation phenomena Rp. The capacitor value Cp is calculated from the
relaxation time constant T = RpCp assuming that the extinction time of the transient is

approximately 37.

There are many methods to calculate the internal resistance of the battery as a function of SOC.
[7] Internal resistance is usually calculated from multiple discharge/charge pulses at different
SOC. In this way we obtain the SOC-dependent internal resistance. Depending how long the
voltage is measured into the pulse, the gradient will represent a phenomenon between the pure
Ohmic resistance Rq (milliseconds) and the cell’s bulk total resistance (seconds) (Ra+ Rp). The test
profile applied to a battery cell EIG 20 Ah is shown in Figure 41 and the results are used to
calibrate the model.
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Figure 41: Internal resistance test profile.
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The two current pulses are used to calculate the ohmic and relaxation resistances during
discharge and charge. On the other hand, the current step is used to discharge the battery by a
10% of the nominal capacity value and to calculate the rise in the voltage curve used to determine
the value of open circuit voltage and of the capacitance Cp.

Figure 42 shows the open circuit voltage as a function of the depth of discharge EO (DOD)
calculated with the above method and using experimental data for an EIG 20Ah pouch cell.

Figure 42: EO as a function of DOD for EIG 20Ah cell.
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Figure 43 shows the Simulink complete model for a battery, while the battery subsystem is
represented in an electric circuit equivalence, as reported in Figure 44.
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Figure 43: Simulink model for the battery.
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Figure 44: Details of the Simulink battery subsystem.
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To verify the effectiveness of the model in reproducing the behaviour of the battery, we report
the comparison between the measured voltage and the one obtained from the model using the
calibration with pulses at DOD = 0.7 and a discharge to reach a DOD = 0.8 (Figure 45).

Figure 45: Comparison among the measured and the calculated voltage in the step between 0.7 and 0.8
DOD.
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Figure 46 reports the comparison between the measured and calculated voltage response on
standard discharge and recharge cycle.

Figure 46: Comparison on standard discharge and recharge cycle.
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The curves shown in Figure 46 are very similar for almost all the length of the charge/discharge
curve with the exception of the non-parameterized zone for DOD = 0 and DOD = 1, that is not

calibrated in the model. However, in automotive applications, batteries rarely drop below 10%
SOC.

In the following, the above model will be used in the simulation for the EV battery behavior.
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3.3 Battery charging algorithm and profiles

Based on their power ratings EV battery chargers can be divided into level 1, level 2 and level 3
(Table 11).

Table 11: EV battery chargers characteristics.

Typical use | Typical power | Charging time

Level 1 Home 2 kW 4-11h
Level 2 Public 20 kKW 1-4h
Level 3 DC Fast 100 kW <30 min

The chargers can be on-board or off-board, depending on the technology. Moreover, some
chargers allow bidirectional power flow to implement vehicle-to-grid (V2G) interaction. This
technology has met much interest due to its ability to supply power to the grid in the event of a
peak load request, system failure, or other unexpected scenarios. For several purposes, V2G car
batteries can be used as distributed energy storage systems that can improve energy quality,
stability and operating cost of the distribution network, as well as power carriers to bring energy
from one zone to another one.

Besides the charging technology, we also need considering the applied charging method. For Li-
ion batteries, the most popular charging modes are constant current/constant voltage (CC/CV)
and constant power/constant voltage (CP/CV) profiles. However, there are studies proposing
different charging strategies aimed at improving charging times with the same power and
mitigating the negative effects on the battery life.

3.3.1 Constant Current-Constant Voltage (CC-CV)

In this type of charge, an initial phase in which the current keeps constant and equal to the
maximum value allowed by the type of considered charge is followed by a phase in which the
current is progressively reduced to keep the voltage constant. The switch between the two
modes occurs at a certain threshold voltage value that depends on the battery technology.
Charging of the battery keeps going with a constant voltage equal to the cut-off value. Full charge
stops when the current reaches a minimum value in between 3 and 5% of the rated current.
Examples of charging curves are reported in Figure 47, where the CC-CV charge mode is shown
for different charging power levels. These experimental curves have been recorder for a Nissan
Leaf with 24 kWh battery pack with initial SOC of 20% at ENEA laboratory.
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Figure 47: Charge profile for a Nissan Leaf (24 kWh battery) for different charging power.
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3.3.2 Constant Power — Constant Voltage

The other charging option available for EV chargers is Constant Power - Constant Voltage. The
concept is similar to the one of the CC-CV charge, but in this method there is a first phase at
constant power (CP) until the maximum cell voltage is reached. Considering the voltage increases
with the SOC, the current must be adjusted ensuring a constant charging power. At this stage, a
constant voltage recharge takes place in the same way as illustrated in the previous case.

3.3.3 Advanced charging pattern

In literature, it is possible to find many charging algorithms that are tailored to improve the charge
speed and/or the battery life and safety.

The Five-Step Charging Pattern is a multistage constant-current (CC) charging method starting
with the charge stage at the highest current until the pre-set limit voltage is reached. In the
following, in order to induce a voltage drop, the current is switched to the next constant value,
which is smaller than the previous one. These steps repeat to obtain five CC stages. [19] Even if
the algorithm can shorten the charging time, finding the correct values of the currents for the five
stages can be difficult and time-costly making this method cumbersome for real-world
applications.

The pulse charging method suggests charging the battery with a sequence of pulses. During the
rest periods between two pulses, the ions can diffuse and neutralize. In that case, the charging
phase can continue at high rate with the following pulse avoiding harmful phenomena in the
battery. Different strategies exist to control the width or the peak value of the pulses. As for the
five-step, this charging algorithm is not currently used in any commercial solution.

Other strategies rely on the battery physical-based models which take into account the side
reaction occurring in the battery and the aging process to design a tailored charge profile
minimizing the charging time while preserving, the battery lifetime [12]. However, these models
are strictly dependent on battery chemistry and technology.

3.4 Charging strategies

An electric car being charged represents an additional load for the electricity grid. While there
are industry standards, such as IEC1000-3-2, requiring low distortion on the side of the charger
to minimise the impact on power quality, they do not take into account the aggregate effect of
many simultaneous charges. These can cause problems such as deterioration of energy quality;
the instability of the electricity grid and the degradation of operational efficiency [13]. To ensure
stability in the grid, energy demand and supply must be matched. However, this is difficult to
achieve because of the unpredictability of the charge events and of the large variations they
present over the time. The situation is further complicated by the introduction of renewable
energy sources. To address this problem, suitable charging schemes can be introduced. There
are many possible approaches whose characteristic are reported in Figure 48
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Figure 48: Charging scheme classification (adapted from [13]).
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Uncontrolled charging applies when the controller (i.e., the grid operator) doesn’t have
information to control the charging profile. Therefore, the batteries start charging immediately
when they are plugged-in, or after a user-specified delay.

In controlled charging schemes, different strategies can be applied. In indirectly controlled
charging, the schemes do not directly control the charging parameters. However, external
variables can indirectly influence the charging operation. For example, the price of energy can
influence the decision recharging and thus help avoiding grid overload. The smart charging
schemes directly control the charging parameters, such as the output of the electrical sockets or
the set-point of the chargers so that the power delivered can be varied. Therefore, the charging
time does not necessarily coincide with the time of connecting the vehicle to the socket. Smart
charging schemes implement a series of actions in order to achieve monetary (optimal finance)
or operational (optimal operation) performance goals. Bidirectional charging scheme acts as a
smart charging scheme which includes the possibility of bidirectional power flux, i.e. vehicle to
grid (V2G).

The charging control strategies can be centralized when information from many charging
infrastructures are collected and coordinated by a single/central entity or even distributed, if the
computation load for the optimization strategy is performed by several entities [14].

Offline strategies provide for the calculation of charging profiles based on the expected operation
of the system and therefore, assume that all electric vehicles are available for negotiation of their
tariff plans since the beginning.. However, in a more realistic context, neither the arrival times of
electric vehicles nor the state of the electricity distribution network is known a priori. In contrast,
online strategies are able to handle numerous uncertainties, including the mobility of electric
vehicles [14].

To test a possible charging strategy, we consider data on real charging events. The data refers
to the charging event in a given day at different charging sites, but as a hypothesis, we will
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assume that all the sites, and thus the charging events, refer to the same charging infrastructure.
The chart in Figure 49 represents the arrival time at the charging sites and the charging durations.

Figure 49: Arrival time and charge duration for the charging events selected.
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The corresponding load power profile at the hypothetical charging infrastructure is presented in
Figure 50. The bold line represents the total power load at the station, while the light lines refers
to the single charge events load profile. As shown in the figure, the total request of power varies
amply with time and can be quite high for some periods of time.
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Figure 50: Load power profile for the charging events.
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If, for any reasons, the power at the station should be limited, it is necessary to put in place some
charging strategies to cope with the power demand and the limitations. We will apply a local
(decentralised) charging strategy, where the charging infrastructure operator limits the power
available for the charges on the basis of an external constraints on power level. For this purpose,
we implemented the time-load shift. This consists in the possibility of having a variable rate
charging. In this way, the power used to charge can be varied in time within a range between
zero and the maximum charging power compatible with EV battery SOC and technology.

We propose an on-line algorithm that does not need any forecast data on EV arrivals. We assume
that information on energy required and parking time is available on EV arrival. Different charging
sockets of different charging power are also available. Based on this information, we can derive
the amount of energy to be delivered before departure at any time. Our approach is based on a
fuzzy model that, using the available information as an input, it gives the value of the power at a
given time for each charging event. We compare two fuzzy models having different inputs and
we show that more data can give better results complying with the objectives.

The model can handle time-variable limit, but for simplicity we suppose the charging station
should limit the absorbed power to 60 kW.

For each time, we calculate the energy to be charged and the time left before departure for every
EV in charge. Since we don’t have information on battery SOC and size, we must rely on the
experimental charging profile to infer the behavior when the input power is changed. This is
especially important in the last part of the charge, when the battery can enter the CV charging
phase, thus limiting the input power. Moreover, we set three profiles for the user:
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e Long parking time: these are the more prone to be included in the power modulation;

e Medium parking time: these stay a little more time than required and can participate to
the power modulation;

e Short parking time: the park and charging times coincide and they won't participate to
the power modulation.

When the total load request at the charging station exceeds the power limit, for each EV we
calculate for the ratio between the remaining energy to be charged and the time left before
departure. This “average power” is compared to the maximum power accepted by the EV (taken
from experimental data) and the result is the input for the first fuzzy model (M1).

The graphical representation for M1 is reported in Figure 51.

Figure 51: Graphical representation of M1 fuzzy model.
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The score is close to zero if the remaining recharge can be completed in much shorter times than
the available one or with much lower power levels of than required. Conversely, the score is close
to one if the recharge requires times close to the available one and power levels are close to the
maximum ones. It follows that, the lower the score, the lower will be the priority to finish charging
with a greater the flexibility in modifying the power supplied.

The other fuzzy model, M2, takes into account the “average power” and the time left before
departure (“deltaT”). Therefore, the score is calculated taking into account both inputs (Figure
52).
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Figure 52: Graphical representation of M2 fuzzy model.
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The score obtained for the model M2 has the same interpretation of model M1.

In Figure 53 we compare the results for the two model, along with the load profile for the original
data. As it can be seen, both model reduces the power load. However, M1 still show some peaks,
while M2 manage to contain the power load in the required limit.

Figure 53: Comparison among different charging control algorithms.
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To understand the different results, we can investigate the single charging profile. As shown in
Figure 54, both M1 and M2 profiles are longer that the original one. However, M2 model acts
more on the initial part of the charge profile (see profile (b)) than M1: this has a major impact on
the total power profile.
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Figure 54: Single charge profiles for different charging algorithms.
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The fuzzy approach can be further extended to include other input variables, as the SOC, or model
V2G. In order to show the effect of V2G, we lower the overall Cl limit to 50 kW. This is possible
because the 60 kW limit can be managed with the charge shift. It is important to stress out that
in our model we are dealing with unscheduled arrivals. However, as long as the occupation
frequency of the CPs remains low as in the analyzed sample, even in the case of scheduled
arrivals, only a small part of the energy available from the V2V could be used. This drawback
could be overcome by using a stationary storage system. However, this solution would be

detrimental to the overall energy efficiency of the system, as an effect of the finite efficiencies of
the various components (batteries, converters, etc.).

In Figure 55 we show the load profile at the Cl with and without V2G that, in this specific case,
is a vehicle-to-vehicle (V2V) application. Only two cars were allowed to get bidirectional power
flux: one in the time slot between 450 and 700 minutes, and the other one in the time slot
between 800 and1000 minutes. We have increased the availability period of the vehicles
compared to the original data allowing them to be used in V2V. In Figure 56, the power profiles
with or without V2G for the first of the two EV is shown. The two discharge events contribute to
lower the peaks observed in Figure 55.
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Figure 55: Overall load at the CI with and without V2G.
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Figure 56: Power profile for the EV with and without V2G.
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The fuzzy model is very sensitive to its design and can produce different profiles, depending on
the objectives of the designer, and on the model parameters. For example, to smooth the peaks
in the final part of the reload profile, it is possible to reshape the membership function of the time
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variable. The comparison between the profiles for the same vehicle and two different
membership function is shown in Figure 57.

Figure 57: Comparison between profiles with different membership function.
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3.5 Battery simulations

In this section we illustrate the response of the battery model presented in the previous paragraph
3.2.4. The parameters used in the calibration are the ones obtained from tests made on battery
cells EIG 20 Ah with a nickel-manganese-cobalt compound at the cathode and graphite at the
anode.

We compare the results of our model with the Battery block implemented in the SimEscape tool
of MatLab. According to MatLab documentation, “the Battery block implements a generic
dynamic model representing most popular types of rechargeable batteries.” [15]. The underling
model of the battery block represents a simplification with respect to the one we proposed
because its equivalent circuit neglects the RC network, thus neglecting the diffusion dynamics.
The equivalent circuit for the battery block is reported in Figure 58.
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Figure 58: Simplified battery model used in MatLab battery block
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Notwithstanding its simplicity, the model can reproduce the charge-discharge characteristic of a
battery, and its behavior is characterized by the parameters set in the circuit. The maximum error
of the model dynamics with respect to experimental data is 5% in the SOC range 10%-100%
and for charge currents between O and 2 C, and discharge currents from 0 to 5 C. [16]

In the model, some simplifying assumptions are made. Among those, the most relevant for Li-ion
batteries are the following:

e Constant internal resistance during the charge and discharge cycles and independent
from current amplitude.

e The discharging and charging characteristics are assumed to be the same.

e The capacity of the battery does not change with the amplitude of the current.

Even with the above limitation, the model has been proven to effectively simulate the demand
charging profile of an EV battery.[39]

The open circuit voltage for the Matlab battery block id reported in Figure 59. It shows there is a
different trend compared to the one observed for the EIG battery cell (reported in Figure 42). This
will influence the voltage outputs of the two models.
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Figure 59: EO curve for the MatLab battery block
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For the battery data, we used voltage and energy capacity values similar to those of the Chrevolet
Bolt-EV (350V and 60 kWh),[40] and the ones of the first-generation Nissan Leaf (350V and 24
kWh) [41]. Since the Simulation models accepts the values of nominal voltage and battery
capacity in Ampere-hour as input, the previous values have been approximated, and are shown
in Table 12.

Table 12: EV batteries main characteristics

Nominal Voltage (V) | Capacity (Ah) Energy (kWh)
A 350 68

23.8
B 350 170 59.5

The model for the battery pack was created by putting in parallel elementary battery modules
placed in series. Since the elementary batteries have a nominal voltage of 3.7 V and an effective
capacity of about 17 Ah, 97 modules consisting of 4 elementary cells in series were putin parallel
for battery A, while for battery B 97 modules consisting of 10 cells in series were put in parallel.

In the following, we compare SOC, voltage and input current for the two battery models, and for
both EV batteries characteristic set. Indeed, the input current C for the battery is a function of the
applied power P and the battery voltage V, C=P/V.
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Firstly, we analyze the response to the original charge power profile and the one generated by
the fuzzy model M2. The left part of Figure 60 shows the results for the battery A. On the other
hand, the right part of Figure 60 shows the results for battery B. Solid blue lines represent the
outputs of the model for the EIG battery cells, while red dashed lines refer to the simplified circuit
of the MatLab battery block.

The two models perform almost identically for the SOC value. It can be noted that the two profiles
bring the battery the same amount of charge, even though in a different way. Since battery B is
bigger than A, the final SOC for the first is smaller. On the other hand, differences are evident in
the battery voltage behavior. As mentioned above, this is due to the difference in the open circuit
voltage behavior as a function of DOD and reflects the difference among different battery
chemistry. The voltage of battery B values remain always well below the voltage values of battery
A. This is one of the reasons why bigger batteries are less prone to deteriorate if fast charged. As
we can see, the proposed model shows a wider range of voltage values for battery A than the
Simulink model. In particular, higher peak value is reached, which is lower than the maximum
battery voltage for both profiles. The Model 2 profile achieves a slightly higher value for peak
voltage. The same behavior is found for battery B, although in this case the voltage variation
amplitude is lower than that for battery A. For battery B, the Simulink model gives higher and
more similar voltage values to those obtained for battery A. This may depend on the fact that the
proposed model represents the car battery pack as a network of cells in series and parallel, while
the Simulink model represents the battery pack with a single circuit.

Figure 60: Comparison of the battery main output characteristics for different sizes and models.
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In the following, the outputs of the model when the battery A is selected and the V2V is present
have been analyzed and compared to the case with no V2V. The input power profiles are the one
reported in in Figure 56. The outputs are reported in Figure 61. The dynamic of the battery when
V2V is applied is quite straightforward in the lower panel of Figure 61(a), where the voltage is
reported. However, the peaks are quite small, therefore we don’t expect detrimental effects of
V2V on the battery.



E)44.1 USER-CHI - EV batteries and charging solutions models USER- CH,I

CHARGING YOUR E-MOBILITY FUTURE

Figure 61: Outputs for the battery profile with and without V2V: (a) Voltage; (b) Current; (c) SOC.
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3.5.1 Ageing effects

In order to simulate ageing effect on the battery, we consider the battery at the begin and at the
end of its life (EOL). The latter one is usually reached when the effective capacity reaches the
80% of the nominal capacity and/or its internal resistance doubles.[18]

We use the Simulink battery to model the aging effects, as we can directly change the capacity
and internal resistance values. Even if this is a simplified model, it can give a first idea of what
happens with battery aging. We applied the profile obtained for the V2V (Figure 56) to the
battery A with an initial SOC of 20%. Figure 62 shows the response of the Simulink model for
battery A when its nominal capacity is reduced by 20% and its internal resistance is doubled. As
shown in panel (a) of Figure 62, the charging process is shorter and the voltage rises faster
compared to the battery at the beginning of its life due to higher internal resistance. In addition,
the quantity of charges delivered to the battery is smaller because its effective capacity is
reduced.
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Figure 62: Effect of aging on the battery response (Simulink model).
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The outputs shown in Figure 62 simulate ageing for a single cell. However, the behaviour of the
battery pack is slightly different because the pack is managed by a Battery Management System
(BMS) communicating with the charger and preventing the battery from exceeding the
operational limits. Since the increase of internal resistance results in a higher voltage cell, the net
results is an increase of charging time because the BMS limits the charging power or current to
maintain the voltage inside the limits. Differences in battery response due to aging can also lead
to faster battery deterioration especially if the BMS fails to correctly identify the health of the
battery.
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3.6 Conclusions

In this section, we have proposed an equivalent circuit battery model, whose parameters have
been extracted from experimental tests. The model has been validated against experimental data
and it has been used to simulate the response of a battery to different charging profiles: a simple
constant-power, a modulated-power and a modulated-power plus V2V, which are the output of
a fuzzy model that controls the power level in a charging station. The response of the battery
model demonstrates the feasibility of complex charging strategies, including bi-directional ones,
even for mid-range car batteries.
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4.Planning a charging
Infrastructure integrated with a
PV-battery system

In the present section, we present an approach for the optimal sizing of a renewable energy
source (RES) and an energy storage for a charging station in an urban area. In particular, the
considered RES is a photovoltaic (PV) system, since it is the most suitable for an urban
environment. The analysis is based on real data on charging events from two the demo cities,
Turku and Barcelona.

4.1 Method

The basic hypothesis of the study is the following:

e PV system: it consists of a finite number of identical solar panels, with inverters and
balance-of-system (BoS). The space available to install the subsystem can be

constrained or not.

e Battery system: it consists of a finite number of identical battery units of common

technology integrated with a BoS.

e Balance-of-system BoS: generally, it consists of power conditioning devices,
inverters, wiring, and installation hardware. The specifics of a BoS system depend on
the location of the installation. In our model, we treat the BoS cost as a fixed cost.

Usually, it does not affect too much the project costs [10].

In general, PV sizing depends on the following constraints:
e The available surface (physical constraint);
e Theload and solar irradiation (power constraint);
e The energy storage (size and characteristic);

e The grid (availability, net metering, energy price, etc.).

Battery size should be determined by:

e PVsize;
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e Load demand;
e Battery price;

e Grid availability.

Moreover, the battery size depends on its characteristics: in particular, the power is one key
parameter in the size determination. However, batteries performances are generally expressed
in terms of different parameters, such as the maximum charge and discharge currents (that
usually vary with temperature and ageing), maximum, minimum and operating voltage (this last
is a function of the SOC), and capacity (expressed in Ah). Power (P) is related to voltage (V) and
current (I) by the simple relation: P=V*| (for direct current, DC), where V is the voltage at the
battery terminal.

Since voltage is not a linear function of SOC, also current intensity, temperature, and power are
not a linear function of SOC, which makes difficult implementing a simple algorithm for size
optimization. This problem is partially overcome by the fact that the curve (representing the
relation between voltage and SOC) can be approximated by a straight line within the SOC range
of 20-80%.

4.2 BESS and PV cost

Different models for the estimation of battery energy storage systems (BESS) are available for
both behind and in-front meter applications. In this study, we limited to the study of the behind-
the-meter (BTM) case that is used for commercial and residential applications where capacity
ranges from 0.01 to 0.25 MWh [11]. Usually, the battery technologies used in “behind the meter”
(BTM) applications are based on li-ion and lead-acid.

An analysis from Lazard, the financial advisory and asset management firm, shows the behind-
the-meter system costs are substantially higher than the in-front-of-the-meter system due to
higher unit costs. Moreover, initial cost of lead-acid batteries is outweighed by higher operating
costs when compared with li-ion [20].

To compare different BESS, the leveled cost of storage (LCOS) metric has been introduced, that
is the analogous of the leveled cost of energy for energy sources. The LCOS has been introduced
by Belderbos, et al.[21] and has been defined as “the fictitious average electricity price during
discharging needed over the lifetime of the storage plant to break even the full costs for the
investor”. This value takes into account many parameters, such as that capex, cycles and discount
rate.

Without entering into detailed calculations, Table 1summarizes the founding from LCOS reported
by different sources for BTM applications.
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Table 13: LCOS for different battery systems

Capex
Source Battery type Opex [USD/kW] | LCOS [USD/kWh]
- USD/kW

Apricum [22] Li-ion 0.53
Lazard Li-ion 576-1289 0 0.89-1.27
Lazard Lead-acid 445-835 0 1.06-1.24
SolarPro* [25] Li-ion 1406 0 0.56
‘[’;’;’]r'd Energy Councll | ion 300-3700 7-74 0.15-0.7
World Energy Council Lead-acid 500-1700 10-34 0.1-0.4

A study of the International Renewable Energy Agency (IRENA) [27], reports the CAPEX will
decrease for all technologies by the year 2030, estimating a drop of about 60% for li-ion system
capital costs, and of 50% for lead-acid systems. Instead OPEX are assumed remaining
unchanged, as the maintenance costs are already very low compared to capital costs.

According to a study presented by Fortum [29], the average battery pack price in 2020 was
around 200 €/kWh for residential-commercial use. However, battery system CAPEX can be as
high as 500-400 €/kWh, although it is supposed to halves by 2025. The OPEX for a utility-scale
system is around 1.5% of the CAPEX.

The photovoltaic market has a higher degree of maturity. According to European Energy
Innovation, the cost of a PV residential system without tax is about EUR 1210/kWp. Adding a
surcharge of EUR 140/kWp for fees, permits, insurance, etc., an installed PV system can cost
around EUR 1350/kWp without financing and VAT. [9] The price for modules is constantly
decreasing, as shown in the graph taken from pvXchange.com and reported in Figure 63.

4 Residential case: 6.4 kWh installed.
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Figure 63: Trend for EU module prices by technology. Source: pvXchange
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The European Technology and Innovation Platform for Photovoltaics estimates that the cost for
a 50MWp utility system is about 65% of the residential one; for a IMWp system it is 80% and
for a 50kWp (commercial) system it is 90% of the residential cost [1][30]. On 2014, since the
cost of a turnkey photovoltaic utility scale was 955 €/kWp, in front of a reduction to 823 and 724
in 2020 and 2025 respectively [31], we can deduce the PV price in 2020 for residential is around
1200 €£/kWp, while for commercial is around 1000 €/kWp. In this estimation, we did not include
any analysis of Covid-19 influence on PV system price. Thereafter, Capex for PV system is
estimated at 1200 €/kW.

4.3 Charging infrastructure and energy fluxes

A number of studies have been carried out on the planning and operation schedules of renewable
energy sources and storage systems. There are several issues and technologies to take into
account the correct design of charging infrastructures for electric road vehicles. In fact, these
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could be integrated into smart grids, as well as with different types of renewable energy sources
and stationary electrical storage systems [23]. It is also necessary taking into account different
charging devices and their architectures as well as the configuration of the charging station which
can bein DC or AC. Particular attention is also paid to rapid charge of electric vehicles and related
issues.[24]

Fast charging of EVs is an attractive way to restore energy of depleted batteries in short time.
Fast charging (FC) is generally operated according the IEC 61851 rule mode 4 DC current. AC
grid power is interfaced with EV using an AC/DC converter placed on ground in order to decrease
the vehicle weight. Different types of standards were developed in the past few years:
CHAdeMO (Charging de Move) was the first solutions presented on the market by Japanese EVs
manufacturers. This was followed by CCS (Combined Charging System) in Europe, Tesla
Supercharger and Chinese GB/T.

First series of CHAdeMO fast charging stations were able to supply 50 kW DC power at 400 V
and 125 A having a maximum charging time of half hour with a 24 kWh battery size (i.e. old “
Nissan Leaf”). The increasing demand in EV power has led to double or triple the battery size
growing up to 70 kWh and over. Developments in fast charging station brought the charging
power available at 120 kW for Tesla Supercharger, 150 kW for CHAdeMO/CCS and 125 kW for
the Chinese GB/T. The competition to achieve higher charging power (XFC Extreme Fast Charger)
is currently ongoing and 350 kW is now offered by some manufacturers of charging station (ABB,
lonity, Tritium, etc.). Relevant characteristics of some fast charge standards are reported in Table
14.

Table 14: Characteristic of different fast charge standards.

CHAdeMO
Max power 400 kW 350 kW 185
Max Current 400 400 250
(A)
Max